Do you want to publish a course? Click here

ExaWorks: Workflows for Exascale

204   0   0.0 ( 0 )
 Added by Aymen Alsaadi
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Exascale computers will offer transformative capabilities to combine data-driven and learning-based approaches with traditional simulation applications to accelerate scientific discovery and insight. These software combinations and integrations, however, are difficult to achieve due to challenges of coordination and deployment of heterogeneous software components on diverse and massive platforms. We present the ExaWorks project, which can address many of these challenges: ExaWorks is leading a co-design process to create a workflow software development Toolkit (SDK) consisting of a wide range of workflow management tools that can be composed and interoperate through common interfaces. We describe the initial set of tools and interfaces supported by the SDK, efforts to make them easier to apply to complex science challenges, and examples of their application to exemplar cases. Furthermore, we discuss how our project is working with the workflows community, large computing facilities as well as HPC platform vendors to sustainably address the requirements of workflows at the exascale.



rate research

Read More

We extract pixel-level masks of extreme weather patterns using variants of Tiramisu and DeepLabv3+ neural networks. We describe improvements to the software frameworks, input pipeline, and the network training algorithms necessary to efficiently scale deep learning on the Piz Daint and Summit systems. The Tiramisu network scales to 5300 P100 GPUs with a sustained throughput of 21.0 PF/s and parallel efficiency of 79.0%. DeepLabv3+ scales up to 27360 V100 GPUs with a sustained throughput of 325.8 PF/s and a parallel efficiency of 90.7% in single precision. By taking advantage of the FP16 Tensor Cores, a half-precision version of the DeepLabv3+ network achieves a peak and sustained throughput of 1.13 EF/s and 999.0 PF/s respectively.
Performance tools for forthcoming heterogeneous exascale platforms must address two principal challenges when analyzing execution measurements. First, measurement of extreme-scale executions generates large volumes of performance data. Second, performance metrics for heterogeneous applications are significantly sparse across code regions. To address these challenges, we developed a novel streaming aggregation approach to post-mortem analysis that employs both shared and distributed memory parallelism to aggregate sparse performance measurements from every rank, thread and GPU stream of a large-scale application execution. Analysis results are stored in a pair of sparse formats designed for efficient access to related data elements, supporting responsive interactive presentation and scalable data analytics. Empirical analysis shows that our implementation of this approach in HPCToolkit effectively processes measurement data from thousands of threads using a fraction of the compute resources employed by the application itself. Our approach is able to perform analysis up to 9.4 times faster and store analysis results 23 times smaller than HPCToolkit, providing a key building block for scalable exascale performance tools.
In this paper we describe the research and development activities in the Center for Efficient Exascale Discretization within the US Exascale Computing Project, targeting state-of-the-art high-order finite-element algorithms for high-order applications on GPU-accelerated platforms. We discuss the GPU developments in several components of the CEED software stack, including the libCEED, MAGMA, MFEM, libParanumal, and Nek projects. We report performance and capability improvements in several CEED-enabled applications on both NVIDIA and AMD GPU systems.
Scientific workflows have been used almost universally across scientific domains, and have underpinned some of the most significant discoveries of the past several decades. Many of these workflows have high computational, storage, and/or communication demands, and thus must execute on a wide range of large-scale platforms, from large clouds to upcoming exascale high-performance computing (HPC) platforms. These executions must be managed using some software infrastructure. Due to the popularity of workflows, workflow management systems (WMSs) have been developed to provide abstractions for creating and executing workflows conveniently, efficiently, and portably. While these efforts are all worthwhile, there are now hundreds of independent WMSs, many of which are moribund. As a result, the WMS landscape is segmented and presents significant barriers to entry due to the hundreds of seemingly comparable, yet incompatible, systems that exist. As a result, many teams, small and large, still elect to build their own custom workflow solution rather than adopt, or build upon, existing WMSs. This current state of the WMS landscape negatively impacts workflow users, developers, and researchers. The Workflows Community Summit was held online on January 13, 2021. The overarching goal of the summit was to develop a view of the state of the art and identify crucial research challenges in the workflow community. Prior to the summit, a survey sent to stakeholders in the workflow community (including both developers of WMSs and users of workflows) helped to identify key challenges in this community that were translated into 6 broad themes for the summit, each of them being the object of a focused discussion led by a volunteer member of the community. This report documents and organizes the wealth of information provided by the participants before, during, and after the summit.
It is common practice to partition complex workflows into separate channels in order to speed up their completion times. When this is done within a distributed environment, unavoidable fluctuations make individual realizations depart from the expected average gains. We present a method for breaking any complex workflow into several workloads in such a way that once their outputs are joined, their full completion takes less time and exhibit smaller variance than when running in only one channel. We demonstrate the effectiveness of this method in two different scenarios; the optimization of a convex function and the transmission of a large computer file over the Internet.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا