Films produced by assembling bare gold clusters well beyond the electrical percolation threshold show a resistive switching behavior whose investigation has started only recently. Here we address the challenge to charaterize the resistance of a nanogranular film starting from limited information on the structure at the microscopic scale by the means of Bruggemans approach to multicomponent media, within the framework of Effective Medium Approximations. The approach is used to build a model that proves that the observed resistive switching can be explained by thermally regulated local structural rearrangements.
BiFeO3 thin films have been deposited on Pt/sapphire and Pt/Ti/SiO2/Si substrates with pulsed laser deposition using the same growth conditions, respectively. Au was sputtered as the top electrode. The microscopic structure of the thin film varies by changing the underlying substrate. Thin films on Pt/sapphire are not resistively switchable due to the formation of Schottky contacts at both the top and the bottom interface. However, thin films on Pt/Ti/SiO2/Si exhibit an obvious resistive switching behavior under forward bias. The conduction mechanisms in BiFeO3 thin films on Pt/sapphire and Pt/Ti/SiO2/Si substrates are discussed to understand the different resistive switching behaviors.
We studied the resistive memory switching in pulsed laser deposited amorphous LaHoO3 (LHO) thin films for non-volatile resistive random access memory (RRAM) applications. Nonpolar resistive switching (RS) was achieved in PtLHOPt memory cells with all four possible RS modes ( positive unipolar, positive bipolar, negative unipolar, and negative bipolar) having high RON and ROFF ratios (in the range of 104 to 105) and non-overlapping switching voltages (set voltage, VON 3.6 to 4.2 V and reset voltage, VOFF 1.3 to 1.6 V) with a small variation of about 5 to 8 percent. X ray photoelectron spectroscopic studies together with temperature dependent switching characteristics revealed the formation of metallic holmium (Ho) and oxygen vacancies (VO) constituted conductive nanofilaments (CNFs) in the low resistance state (LRS). Detailed analysis of current versus voltage characteristics further corroborated the formation of CNFs based on metal like (Ohmic) conduction in LRS. Simmons Schottky emission was found to be the dominant charge transport mechanism in the high resistance state.
The polarity-dependent resistive-switching across metal-Pr0.7Ca0.3MnO3 interfaces is investigated. The data suggest that shallow defects in the interface dominate the switching. Their density and fluctuation, therefore, will ultimately limit the device size. While the defects generated/annihilated by the pulses and the associated carrier depletion seem to play the major role at lower defect density, the defect correlations and their associated hopping ranges appear to dominate at higher defect density. Therefore, the switching characteristics, especially the size-scalability, may be altered through interface treatments.
We report on resistive switching of memristive electrochemical metallization devices using 3D kinetic Monte Carlo simulations describing the transport of ions through a solid state electrolyte of an Ag/TiO$_{text{x}}$/Pt thin layer system. The ion transport model is consistently coupled with solvers for the electric field and thermal diffusion. We show that the model is able to describe not only the formation of conducting filaments but also its dissolution. Furthermore, we calculate realistic current-voltage characteristics and resistive switching kinetics. Finally, we discuss in detail the influence of both the electric field and the local heat on the switching processes of the device.
We investigate the polarity-dependent field-induced resistive switching phenomenon driven by electric pulses in perovskite oxides. Our data show that the switching is a common occurrence restricted to an interfacial layer between a deposited metal electrode and the oxide. We determine through impedance spectroscopy that the interfacial layer is no thicker than 10 nm and that the switch is accompanied by a small capacitance increase associated with charge accumulation. Based on interfacial I-V characterization and measurement of the temperature dependence of the resistance, we propose that a field-created crystalline defect mechanism, which is controllable for devices, drives the switch.