Do you want to publish a course? Click here

Formation of compact galaxies in the Extreme-Horizon simulation

115   0   0.0 ( 0 )
 Added by Sol\\`ene Chabanier
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the Extreme-Horizon (EH) cosmological simulation: EH models galaxy formation with stellar and AGN feedback and uses a very high resolution in the intergalactic and circumgalactic medium. The high resolution in low-density regions results in smaller-size massive galaxies at redshift $z=2$, in better agreement with observations compared to other simulations. This results from the improved modeling of cold gas flows accreting onto galaxies. Besides, the EH simulation forms a population of particularly compact galaxies with stellar masses of $10^{10-11}$,M$_sun$ that are reminiscent of observed ultracompact galaxies at $zsimeq2$. These objects form mainly through repeated major mergers of low-mass progenitors, independently of baryonic feedback mechanisms. This formation process can be missed in simulations using a too low resolution in low-density intergalactic regions.



rate research

Read More

We investigate the formation history of massive disk galaxies in hydro-dynamical simulation--the IllustrisTNG, to study why massive disk galaxies survive through cosmic time. 83 galaxies in the simulation are selected with M$_{*,z=0}$ $>8times10^{10}$ M$_odot$ and kinematic bulge-to-total ratio less than $0.3$. We find that 8.4 percent of these massive disk galaxies have quiet merger histories and preserve disk morphology since formed. 54.2 percent have a significant increase in bulge components in history, then become disks again till present time. The rest 37.3 percent experience prominent mergers but survive to remain disky. While mergers and even major mergers do not always turn disk galaxies into ellipticals, we study the relations between various properties of mergers and the morphology of merger remnants. We find a strong dependence of remnant morphology on the orbit type of major mergers. Specifically, major mergers with a spiral-in falling orbit mostly lead to disk-dominant remnants, and major mergers of head-on galaxy-galaxy collision mostly form ellipticals. This dependence of remnant morphology on orbit type is much stronger than the dependence on cold gas fraction or orbital configuration of merger system as previously studied.
We present the evolution of galaxy sizes, from redshift 2 to 0, for actively star forming and passive galaxies in the cosmological hydrodynamical 1003 cMpc3 simulation of the EAGLE project. We find that the sizes increase with stellar mass , but that the relation weakens with increasing redshift. Separating galaxies by their star formation activity, we find that passive galaxies are typically smaller than active galaxies at fixed stellar mass. These trends are consistent with those found in observations and the level of agreement between the predicted and observed size - mass relation is of order 0.1 dex for z < 1 and 0.2-0.3 dex from redshift 1 to 2. We use the simulation to compare the evolution of individual galaxies to that of the population as a whole. While the evolution of the size-stellar mass relation for active galaxies provides a good proxy for the evolution of individual galaxies, the evolution of individual passive galaxies is not well represented by the observed size - mass relation due to the evolving number density of passive galaxies. Observations of z approx 2 galaxies have revealed an abundance of massive red compact galaxies, that depletes below z approx 1. We find that a similar population forms naturally in the simulation. Comparing these galaxies to their z = 0 descendants, we find that all compact galaxies grow in size due to the high-redshift stars migrating outwards. Approximately 60% of the compact galaxies increase in size further due to renewed star formation and/or mergers.
In order to investigate the formation mechanisms of the rare compact elliptical galaxies (cE) we have compiled a sample of 25 cEs with good SDSS spectra, covering a range of stellar masses, sizes and environments. They have been visually classified according to the interaction with their host, representing different evolutionary stages. We have included clearly disrupted galaxies, galaxies that despite not showing signs of interaction are located close to a massive neighbor (thus are good candidates for a stripping process), and cEs with no host nearby. For the latter, tidal stripping is less likely to have happened and instead they could simply represent the very low-mass, faint end of the ellipticals. We study a set of properties (structural parameters, stellar populations, star formation histories and mass ratios) that can be used to discriminate between an intrinsic or stripped origin. We find that one diagnostic tool alone is inconclusive for the majority of objects. However, if we combine all the tools a clear picture emerges. The most plausible origin, as well as the evolutionary stage and progenitor type, can be then determined. Our results favor the stripping mechanism for those galaxies in groups and clusters that have a plausible host nearby, but favors an intrinsic origin for those rare cEs without a plausible host and that are located in looser environments.
We have identified two channels for the formation of compact dwarf galaxies in the Illustris simulation by reconstructing mass and distance histories of candidates located in the vicinity of the simulations most massive cluster galaxies. One channel is tidal stripping of Milky Way mass galaxies that form outside of clusters and eventually sink into them, spiraling in toward central massive objects. Second channel of formation is an in-situ formation (in reference to the parent cluster) of dwarf mass galaxies, with negligible evolution and limited change in stellar mass. We find 19 compact dwarf galaxies at the centers of 14 clusters, consistent with observations. 30% of them have external origin while 70% are formed in-situ.
We present results on the nature of extreme ejective feedback episodes and the physical conditions of a population of massive ($rm M_* sim 10^{11} M_{odot}$), compact starburst galaxies at z = 0.4-0.7. We use data from Keck/NIRSPEC, SDSS, Gemini/GMOS, MMT, and Magellan/MagE to measure rest-frame optical and near-IR spectra of 14 starburst galaxies with extremely high star formation rate surface densities (mean $rm Sigma_{SFR} sim 3000 ,M_{odot} yr^{-1} kpc^{-2}$) and powerful galactic outflows (maximum speeds v$_{98} sim$ 1000-3000 km s$^{-1}$). Our unique data set includes an ensemble of both emission [OII]$lambdalambda$3726,3729, H$beta$, [OIII]$lambdalambda$4959,5007, H$alpha$, [NII]$lambdalambda$6548,6583, and [SII]$lambdalambda$6716,6731) and absorption MgII$lambdalambda$2796,2803, and FeII$lambda$2586) lines that allow us to investigate the kinematics of the cool gas phase (T$sim$10$^4$ K) in the outflows. Employing a suite of line ratio diagnostic diagrams, we find that the central starbursts are characterized by high electron densities (median n$_e sim$ 530 cm$^{-3}$), high metallicity (solar or super-solar), and, on average, high ionization parameters. We show that the outflows are most likely driven by stellar feedback emerging from the extreme central starburst, rather than by an AGN. We also present multiple intriguing observational signatures suggesting that these galaxies may have substantial Lyman continuum (LyC) photon leakage, including weak [SII] nebular emission lines. Our results imply that these galaxies may be captured in a short-lived phase of extreme star formation and feedback where much of their gas is violently blown out by powerful outflows that open up channels for LyC photons to escape.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا