Do you want to publish a course? Click here

Size evolution of normal and compact galaxies in the EAGLE simulation

78   0   0.0 ( 0 )
 Added by Michelle Furlong
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the evolution of galaxy sizes, from redshift 2 to 0, for actively star forming and passive galaxies in the cosmological hydrodynamical 1003 cMpc3 simulation of the EAGLE project. We find that the sizes increase with stellar mass , but that the relation weakens with increasing redshift. Separating galaxies by their star formation activity, we find that passive galaxies are typically smaller than active galaxies at fixed stellar mass. These trends are consistent with those found in observations and the level of agreement between the predicted and observed size - mass relation is of order 0.1 dex for z < 1 and 0.2-0.3 dex from redshift 1 to 2. We use the simulation to compare the evolution of individual galaxies to that of the population as a whole. While the evolution of the size-stellar mass relation for active galaxies provides a good proxy for the evolution of individual galaxies, the evolution of individual passive galaxies is not well represented by the observed size - mass relation due to the evolving number density of passive galaxies. Observations of z approx 2 galaxies have revealed an abundance of massive red compact galaxies, that depletes below z approx 1. We find that a similar population forms naturally in the simulation. Comparing these galaxies to their z = 0 descendants, we find that all compact galaxies grow in size due to the high-redshift stars migrating outwards. Approximately 60% of the compact galaxies increase in size further due to renewed star formation and/or mergers.



rate research

Read More

We investigate the population of dwarf galaxies with stellar masses similar to the Large Magellanic Cloud (LMC) and M33 in the EAGLE galaxy formation simulation. In the field, galaxies reside in haloes with stellar-to-halo mass ratios of $1.03^{+0.50}_{-0.31}times10^{-2}$ (68% confidence level); systems like the LMC, which have an SMC-mass satellite, reside in haloes about 1.3 times more massive, which suggests an LMC halo mass at infall, $M_{200}=3.4^{+1.8}_{-1.2}times10^{11}M_odot$ (68% confidence level). The colour distribution of dwarfs is bimodal, with the red galaxies ($g-r>0.6$) being mostly satellites. The fraction of red LMC-mass dwarfs is 15% for centrals, and for satellites this fraction increases rapidly with host mass: from 10% for satellites of Milky Way (MW)-mass haloes to nearly 90% for satellites of groups and clusters. The quenching timescale, defined as the time after infall when half of the satellites have acquired red colours, decreases with host mass from ${>}5$ Gyrs for MW-mass hosts to $2.5$ Gyrs for cluster mass hosts. The satellites of MW-mass haloes have higher star formation rates and bluer colours than field galaxies. This is due to enhanced star formation triggered by gas compression shortly after accretion. Both the LMC and M33 have enhanced recent star formation that could be a manifestation of this process. After infall into their MW-mass hosts, the $g-r$ colours of LMC-mass dwarfs become bluer for the first 2 Gyrs, after which they rapidly redden. LMC-mass dwarfs fell into their MW-mass hosts only relatively recently, with more than half having an infall time of less than 3.5 Gyrs.
We study the formation of planes of dwarf galaxies around Milky Way (MW)-mass haloes in the EAGLE galaxy formation simulation. We focus on satellite systems similar to the one in the MW: spatially thin or with a large fraction of members orbiting in the same plane. To characterise the latter, we introduce a robust method to identify the subsets of satellites that have the most co-planar orbits. Out of the 11 MW classical dwarf satellites, 8 have highly clustered orbital planes whose poles are contained within a $22^circ$ opening angle centred around $(l,b)=(182^circ,-2^circ)$. This configuration stands out when compared to both isotropic and typical $Lambda$CDM satellite distributions. Purely flattened satellite systems are short-lived chance associations and persist for less than $1~rm{Gyr}$. In contrast, satellite subsets that share roughly the same orbital plane are longer lived, with half of the MW-like systems being at least $4~rm{Gyrs}$ old. On average, satellite systems were flatter in the past, with a minimum in their minor-to-major axes ratio about $9~rm{Gyrs}$ ago, which is the typical infall time of the classical satellites. MW-like satellite distributions have on average always been flatter than the overall population of satellites in MW-mass haloes and, in particular, they correspond to systems with a high degree of anisotropic accretion of satellites. We also show that torques induced by the aspherical mass distribution of the host halo channel some satellite orbits into the hosts equatorial plane, enhancing the fraction of satellites with co-planar orbits. In fact, the orbital poles of co-planar satellites are tightly aligned with the minor axis of the host halo.
Despite the insights gained in the last few years, our knowledge about the formation and evolution scenario for the spheroid-dominated galaxies is still incomplete. New and more powerful cosmological simulations have been developed that together with more precise observations open the possibility of more detailed study of the formation of early-type galaxies (ETGs). The aim of this work is to analyse the assembly histories of ETGs in a $Lambda$-CDM cosmology, focussing on the archeological approach given by the mass-growth histories.We inspected a sample of dispersion-dominated galaxies selected from the largest volume simulation of the EAGLE project. This simulation includes a variety of physical processes such as radiative cooling, star formation (SF), metal enrichment, and stellar and active galactic nucleus (AGN) feedback. The selected sample comprised 508 spheroid-dominated galaxies classified according to their dynamical properties. Their surface brightness profile, the fundamental relations, kinematic properties, and stellar-mass growth histories are estimated and analysed. The findings are confronted with recent observations.The simulated ETGs are found to globally reproduce the fundamental relations of ellipticals. All of them have an inner disc component where residual younger stellar populations (SPs) are detected. A fraction of this inner-disc correlates with bulge-to-total ratio. We find a relation between kinematics and shape that implies that dispersion-dominated galaxies with low $V/sigma_L$ (where $V$ is the average rotational velocity and $sigma_L$ the one dimensional velocity dispersion) tend to have ellipticity smaller than $sim 0.5$ and are dominated by old stars. Abridged
We investigate the formation and properties of low surface brightness galaxies (LSBGs) with $M_{*} > 10^{9.5} mathrm{M_{odot}}$ in the EAGLE hydrodynamical cosmological simulation. Galaxy surface brightness depends on a combination of stellar mass surface density and mass-to-light ratio ($M/L$), such that low surface brightness is strongly correlated with both galaxy angular momentum (low surface density) and low specific star formation rate (high $M/L$). This drives most of the other observed correlations between surface brightness and galaxy properties, such as the fact that most LSBGs have low metallicity. We find that LSBGs are more isolated than high surface brightness galaxies (HSBGs), in agreement with observations, but that this trend is driven entirely by the fact that LSBGs are unlikely to be close-in satellites. The majority of LSBGs are consistent with a formation scenario in which the galaxies with the highest angular momentum are those that formed most of their stars recently from a gas reservoir co-rotating with a high-spin dark matter halo. However, the most extended LSBG disks in EAGLE, which are comparable in size to observed giant LSBGs, are built up via mergers. These galaxies are found to inhabit dark matter halos with a higher spin in their inner regions ($<0.1r_{200c}$), even when excluding the effects of baryonic physics by considering matching halos from a dark matter only simulation with identical initial conditions.
286 - Stuart McAlpine 2019
We exploit EAGLE, a cosmological hydrodynamical simulation, to reproduce the selection of the observed sub-millimeter (submm) galaxy population by selecting the model galaxies at $z geq 1$ with mock submm fluxes $S_{850} geq 1$ mJy. There is a reasonable agreement between the galaxies within this sample and the properties of the observed submm population, such as their star formation rates (SFRs) at $z<3$, redshift distribution and many integrated galaxy properties. We find that the bulk of the $S_{850} geq 1$ mJy model population is at $z = 2.5$, and that they are massive galaxies ($M_* sim 10^{11}$ Msol) with high dust masses ($M_{mathrm{dust}} sim 10^{8}$ Msol), gas fractions ($f_{mathrm{gas}} approx 50$%) and SFRs ($dot M_* approx 100$ Msol/yr). They have major and minor merger fractions similar to the general population, suggesting that mergers are not the primary driver of the model submm galaxies. Instead, the $S_{850} geq 1$ mJy model galaxies yield high SFRs primarily because they maintain a significant gas reservoir as a result of hosting an undermassive black hole. In addition, we find that not all highly star-forming EAGLE galaxies have submm fluxes $S_{850} > 1$ mJy. Thus, we investigate the nature of $z geq 1$ highly star-forming Submm-Faint galaxies (i.e., $dot M_* geq 80$ Msol/yr but $S_{850}< 1$ mJy). We find they are similar to the model submm galaxies; being gas rich and hosting undermassive black holes, however they are typically lower mass ($M_* sim 10^{10}$ Msol) and are at higher redshifts ($z>4$). These typically higher-$z$ galaxies show stronger evidence for having been triggered by major mergers, and critically, they are likely missed by current submm surveys due to their higher dust temperatures. This suggests a potentially even larger contribution to the SFR density at $z > 3$ from dust-obscured systems than implied by current observations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا