No Arabic abstract
An introductory Astronomy survey course is often taken to satisfy a college graduation requirement for non-science majors at colleges around the United States. In this course, material that can be broadly categorized into topics related to the sky, the Solar System, the Galaxy, and cosmology is discussed. Even with the wide variety of topics in these categories, though, students may not be 100% interested in the course content, and it is almost certain that a specific topic about which a student wishes to learn is not covered. To at least partly address these issues, to appeal to all of the students in this class, and to allow students to explore topics of their choice, a video project has been assigned to students at Albion College as a class activity. In this assignment, students are asked to create a video of a famous (or not) astronomer, astronomical object or discovery, or telescope observatory to present to the class. Students work in pairs to create a video that is original and imaginative and includes accurate scientific content. For this project, then, students use a familiar technology and exercise their creativity while learning a little (or a lot of) science along the way. Herein data on types and topics of videos, examples of videos, assignment requirements and grading rubrics, lessons learned, and student comments will be discussed and shared.
Writing is an integral part of the process of science. In the undergraduate physics curriculum, the most common place that students engage with scientific writing is in lab classes, typically through lab notebooks, reports, and proposals. There has not been much research on why and how we include writing in physics lab classes, and instructors may incorporate writing for a variety of reasons. Through a broader study of multiweek projects in advanced lab classes, we have developed a framework for thinking about and understanding the role of writing in lab classes. This framework defines and describes the breadth of goals for incorporating writing in lab classes, and is a tool we can use to begin to understand why, and subsequently how, we teach scientific writing in physics.
The problem of a disc or cylinder initially rolling with slipping on a surface and subsequently transitioning to rolling without slipping is often cited in textbooks. The following experiment serves to clearly demonstrate the transition from rolling with slipping to rolling without slipping. In the experiment, a rotating bicycle wheel was placed in contact with a horizontal surface and the wheel in motion was tracked using Tracker video analysis software [8]. The software created linear velocity plots for the centre of mass and a point on the circumference as well as a plot of the angular velocity of the rotating wheel. The time evolution plots created by Tracker clearly illustrate the transition between the two types of motion.
This paper describes low-cost techniques used to collect video data in two different tutorial classrooms - one in which the recording equipment is permanently installed and one in which it is temporary. The author explains what to do before, during, and after class in these two situations, providing general strategies and technical advice for researchers interested in videotaping tutorials or similar classrooms.
Commercial video games are increasingly using sophisticated physics simulations to create a more immersive experience for players. This also makes them a powerful tool for engaging students in learning physics. We provide some examples to show how commercial off-the-shelf games can be used to teach specific topics in introductory undergraduate physics. The examples are selected from a course taught predominantly through the medium of commercial video games.
In the Fall of 2013, Georgia Tech offered a flipped calculus-based introductory mechanics class as an alternative to the traditional large-enrollment lecture class. This class flipped instruction by introducing new material outside of the classroom through pre-recorded, lecture videos. Video lectures constituted students initial introduction to course material. We analyze how students engaged with online lecture videos via clickstream data, consisting of time-stamped interactions (plays, pauses, seeks, etc.) with the online video player. Analysis of these events has shown that students may be focusing on elements of the video that facilitate a correct solution.