Do you want to publish a course? Click here

Path optimization for $U(1)$ gauge theory with complexified parameters

334   0   0.0 ( 0 )
 Added by Yuto Mori
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

In this article, we apply the path optimization method to handle the complexified parameters in the 1+1 dimensional pure $U(1)$ gauge theory on the lattice. Complexified parameters make it possible to explore the Lee-Yang zeros which helps us to understand the phase structure and thus we consider the complex coupling constant with the path optimization method in the theory. We clarify the gauge fixing issue in the path optimization method; the gauge fixing helps to optimize the integration path effectively. With the gauge fixing, the path optimization method can treat the complex parameter and control the sign problem. It is the first step to directly tackle the Lee-Yang zero analysis of the gauge theory by using the path optimization method.



rate research

Read More

A conceptually simple model for strongly interacting compact U(1) lattice gauge theory is expressed as operators acting on qubits. The number of independent gauge links is reduced to its minimum through the use of Gausss law. The model can be implemented with any number of qubits per gauge link, and a choice as small as two is shown to be useful. Real-time propagation and real-time collisions are observed on lattices in two spatial dimensions. The extension to three spatial dimensions is also developed, and a first look at 3-dimensional real-time dynamics is presented.
103 - G. Damm , W. Kerler 1998
In 4D compact U(1) lattice gauge theory with a monopole term added to the Wilson action we first reveal some properties of a third phase region at negative $beta$. Then at some larger values of the monopole coupling $lambda$ by a finite-size analysis we find values of the critical exponent $ u$ close to, however, different from the Gaussian value.
133 - G. Damm , W. Kerler 1998
We investigate four-dimensional compact U(1) lattice gauge theory with a monopole term added to the Wilson action. First we consider the phase structure at negative $beta$, revealing some properties of a third phase region there, in particular the existence of a number of different states. Then our present studies concentrate on larger values of the monopole coupling $lambda$ where the confinement-Coulomb phase transition turns out to become of second order. Performing a finite-size analysis we find that the critical exponent $ u$ is close to, however, different from the gaussian value and that in the range considered $ u$ increases somewhat with $lambda$.
We present numerical results for U(1) gauge theory in 2d and 4d spaces involving a non-commutative plane. Simulations are feasible thanks to a mapping of the non-commutative plane onto a twisted matrix model. In d=2 it was a long-standing issue if Wilson loops are (partially) invariant under area-preserving diffeomorphisms. We show that non-perturbatively this invariance breaks, including the subgroup SL(2,R). In both cases, d=2 and d=4, we extrapolate our results to the continuum and infinite volume by means of a Double Scaling Limit. In d=4 this limit leads to a phase with broken translation symmetry, which is not affected by the perturbatively known IR instability. Therefore the photon may survive in a non-commutative world.
182 - G. Damm , W. Kerler 1997
We investigate critical properties of the phase transition in the four-dimensional compact U(1) lattice gauge theory supplemented by a monopole term for values of the monopole coupling $lambda$ such that the transition is of second order. It has been previously shown that at $lambda= 0.9$ the critical exponent is already characteristic of a second-order transition and that it is different from the one of the Gaussian case. In the present study we perform a finite size analysis at $lambda=1.1$ to get information wether the value of this exponent is universal.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا