Do you want to publish a course? Click here

Simulation Results for U(1) Gauge Theory on Non-Commutative Spaces

140   0   0.0 ( 0 )
 Added by Wolfgang Bietenholz
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present numerical results for U(1) gauge theory in 2d and 4d spaces involving a non-commutative plane. Simulations are feasible thanks to a mapping of the non-commutative plane onto a twisted matrix model. In d=2 it was a long-standing issue if Wilson loops are (partially) invariant under area-preserving diffeomorphisms. We show that non-perturbatively this invariance breaks, including the subgroup SL(2,R). In both cases, d=2 and d=4, we extrapolate our results to the continuum and infinite volume by means of a Double Scaling Limit. In d=4 this limit leads to a phase with broken translation symmetry, which is not affected by the perturbatively known IR instability. Therefore the photon may survive in a non-commutative world.



rate research

Read More

We study U(1) gauge theory on a 4d non-commutative torus, where two directions are non-commutative. Monte Carlo simulations are performed after mapping the regularized theory onto a U(N) lattice gauge theory in d=2. At intermediate coupling strength, we find a phase in which open Wilson lines acquire non-zero vacuum expectation values, which implies the spontaneous breakdown of translational invariance. In this phase, various physical quantities obey clear scaling behaviors in the continuum limit with a fixed non-commutativity parameter theta, which provides evidence for a possible continuum theory. In the weak coupling symmetric phase, the dispersion relation involves a negative IR-singular term, which is responsible for the observed phase transition.
A conceptually simple model for strongly interacting compact U(1) lattice gauge theory is expressed as operators acting on qubits. The number of independent gauge links is reduced to its minimum through the use of Gausss law. The model can be implemented with any number of qubits per gauge link, and a choice as small as two is shown to be useful. Real-time propagation and real-time collisions are observed on lattices in two spatial dimensions. The extension to three spatial dimensions is also developed, and a first look at 3-dimensional real-time dynamics is presented.
We investigate the continuum limit of a compact formulation of the lattice U(1) gauge theory in 4 dimensions using a nonperturbative gauge-fixed regularization. We find clear evidence of a continuous phase transition in the pure gauge theory for all values of the gauge coupling (with gauge symmetry restored). When probed with quenched staggered fermions with U(1) charge, the theory clearly has a chiral transition for large gauge couplings. We identify the only possible region in the parameter space where a continuum limit with nonperturbative physics may appear.
333 - Kouji Kashiwa , Yuto Mori 2020
In this article, we apply the path optimization method to handle the complexified parameters in the 1+1 dimensional pure $U(1)$ gauge theory on the lattice. Complexified parameters make it possible to explore the Lee-Yang zeros which helps us to understand the phase structure and thus we consider the complex coupling constant with the path optimization method in the theory. We clarify the gauge fixing issue in the path optimization method; the gauge fixing helps to optimize the integration path effectively. With the gauge fixing, the path optimization method can treat the complex parameter and control the sign problem. It is the first step to directly tackle the Lee-Yang zero analysis of the gauge theory by using the path optimization method.
We study the three-dimensional U(1)+Higgs theory (Ginzburg-Landau model) as an effective theory for finite temperature phase transitions from the 1 K scale of superconductivity to the relativistic scales of scalar electrodynamics. The relations between the parameters of the physical theory and the parameters of the 3d effective theory are given. The 3d theory as such is studied with lattice Monte Carlo techniques. The phase diagram, the characteristics of the transition in the first order regime, and scalar and vector correlation lengths are determined. We find that even rather deep in the first order regime, the transition is weaker than indicated by 2-loop perturbation theory. Topological effects caused by the compact formulation are studied, and it is demonstrated that they vanish in the continuum limit. In particular, the photon mass (inverse correlation length) is observed to be zero within statistical errors in the symmetric phase, thus constituting an effective order parameter.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا