Do you want to publish a course? Click here

WISEA J041451.67-585456.7 and WISEA J181006.18-101000.5: The First Extreme T-type Subdwarfs?

98   0   0.0 ( 0 )
 Added by Adam Schneider
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the discoveries of WISEA J041451.67-585456.7 and WISEA J181006.18-101000.5, two low-temperature (1200$-$1400 K), high proper motion T-type subdwarfs. Both objects were discovered via their high proper motion ($>$0.5 arcsec yr$^{-1}$); WISEA J181006.18-101000.5 as part of the NEOWISE proper motion survey and WISEA J041451.67-585456.7 as part of the citizen science project Backyard Worlds; Planet 9. We have confirmed both as brown dwarfs with follow-up near-infrared spectroscopy. Their spectra and near-infrared colors are unique amongst known brown dwarfs, with some colors consistent with L-type brown dwarfs and other colors resembling those of the latest-type T dwarfs. While no forward model consistently reproduces the features seen in their near-infrared spectra, the closest matches suggest very low metallicities ([Fe/H] $leq$ -1), making these objects likely the first examples of extreme subdwarfs of the T spectral class (esdT). WISEA J041451.67-585456.7 and WISEA J181006.18-101000.5 are found to be part of a small population of objects that occupy the substellar transition zone, and have the lowest masses and effective temperatures of all objects in this group.



rate research

Read More

We present the discovery of WISEA J083011.95+283716.0, the first Y dwarf candidate identified through the Backyard Worlds: Planet 9 citizen science project. We identified this object as a red, fast-moving source with a faint $W2$ detection in multi-epoch textit{AllWISE} and unWISE images. We have characterized this object with Spitzer Space Telescope and textit{Hubble Space Telescope} follow-up imaging. With mid-infrared detections in textit{Spitzer}s emph{ch1} and emph{ch2} bands and flux upper limits in Hubble Space Telescope $F105W$ and $F125W$ filters, we find that this object is both very faint and has extremely red colors ($ch1-ch2 = 3.25pm0.23$ mag, $F125W-ch2 geq 9.36$ mag), consistent with a T$_{eff}sim300$ K source, as estimated from the known Y dwarf population. A preliminary parallax provides a distance of $11.1^{+2.0}_{-1.5}$ pc, leading to a slightly warmer temperature of $sim350$ K. The extreme faintness and red Hubble Space Telescope and Spitzer Space Telescope colors of this object suggest it may be a link between the broader Y dwarf population and the coldest known brown dwarf WISE J0855$-$0714, and highlight our limited knowledge of the true spread of Y dwarf colors. We also present four additional Backyard Worlds: Planet 9 late-T brown dwarf discoveries within 30 pc.
Continued follow-up of WISEA J153429.75-104303.3, announced in Meisner et al (2020), has proven it to have an unusual set of properties. New imaging data from Keck/MOSFIRE and HST/WFC3 show that this object is one of the few faint proper motion sources known with J-ch2 > 8 mag, indicating a very cold temperature consistent with the latest known Y dwarfs. Despite this, it has W1-W2 and ch1-ch2 colors ~1.6 mag bluer than a typical Y dwarf. A new trigonometric parallax measurement from a combination of WISE, Spitzer, and HST astrometry confirms a nearby distance of $16.3^{+1.4}_{-1.2}$ pc and a large transverse velocity of $207.4{pm}15.9$ km/s. The absolute J, W2, and ch2 magnitudes are in line with the coldest known Y dwarfs, despite the highly discrepant W1-W2 and ch1-ch2 colors. We explore possible reasons for the unique traits of this object and conclude that it is most likely an old, metal-poor brown dwarf and possibly the first Y subdwarf. Given that the object has an HST F110W magnitude of 24.7 mag, broad-band spectroscopy and photometry from JWST are the best options for testing this hypothesis.
Schneider et al. (2020) presented the discovery of WISEA J041451.67-585456.7 and WISEA J181006.18-101000.5, which appear to be the first examples of extreme T-type subdwarfs (esdTs; metallicity <= -1 dex, T_eff <= 1400 K). Here we present new discoveries and follow-up of three T-type subdwarf candidates, with an eye toward expanding the sample of such objects with very low metallicity and extraordinarily high kinematics, properties that suggest membership in the Galactic halo. Keck/NIRES near-infrared spectroscopy of WISEA J155349.96+693355.2, a fast-moving object discovered by the Backyard Worlds: Planet 9 citizen science project, confirms that it is a mid-T subdwarf. With H_W2 = 22.3 mag, WISEA J155349.96+693355.2 has the largest W2 reduced proper motion among all spectroscopically confirmed L and T subdwarfs, suggesting that it may be kinematically extreme. Nevertheless, our modeling of the WISEA J155349.96+693355.2 near-infrared spectrum indicates that its metallicity is only mildly subsolar. In analyzing the J155349.96+693355.2 spectrum, we present a new grid of low-temperature, low-metallicity model atmosphere spectra. We also present the discoveries of two new esdT candidates, CWISE J073844.52-664334.6 and CWISE J221706.28-145437.6, based on their large motions and colors similar to those of the two known esdT objects. Finding more esdT examples is a critical step toward mapping out the spectral sequence and observational properties of this newly identified population.
Residual gas in disks around young stars can spin down stars, circularize the orbits of terrestrial planets, and whisk away the dusty debris that is expected to serve as a signpost of terrestrial planet formation. We have carried out a sensitive search for residual gas and dust in the terrestrial planet region surrounding young stars ranging in age from a few Myr to ~10 Myr in age. Using high resolution 4.7 micron spectra of transition objects and weak T Tauri stars, we searched for weak continuum excesses and CO fundamental emission, after making a careful correction for the stellar contribution to the observed spectrum. We find that the CO emission from transition objects is weaker and located further from the star than CO emission from non-transition T Tauri stars with similar stellar accretion rates. The difference is possibly the result of chemical and/or dynamical effects (i.e., a low CO abundance or close-in low-mass planets). The weak T Tauri stars show no CO fundamental emission down to low flux levels (5 x 10^(-20) - 10^{-18} W/m^2). We illustrate how our results can be used to constrain the residual disk gas content in these systems and discuss their potential implications for star and planet formation.
Quantifying the evolution of stellar extreme ultraviolet (EUV, 100 -- 1000 $overset{circ}{A}$) emission is critical for assessing the evolution of planetary atmospheres and the habitability of M dwarf systems. Previous studies from the HAbitable Zones and M dwarf Activity across Time (HAZMAT) program showed the far- and near-UV (FUV, NUV) emission from M stars at various stages of a stellar lifetime through photometric measurements from the Galaxy Evolution Explorer (GALEX). The results revealed increased levels of short-wavelength emission that remain elevated for hundreds of millions of years. The trend for EUV flux as a function of age could not be determined empirically because absorption by the interstellar medium prevents access to the EUV wavelengths for the vast majority of stars. In this paper, we model the evolution of EUV flux from early M stars to address this observational gap. We present synthetic spectra spanning EUV to infrared wavelengths of 0.4 $pm$ 0.05 M$_{odot}$ stars at five distinct ages between 10 and 5000 Myr, computed with the PHOENIX atmosphere code and guided by the GALEX photometry. We model a range of EUV fluxes spanning two orders of magnitude, consistent with the observed spread in X-ray, FUV, and NUV flux at each epoch. Our results show that the stellar EUV emission from young M stars is 100 times stronger than field age M stars, and decreases as t$^{-1}$ after remaining constant for a few hundred million years. This decline stems from changes in the chromospheric temperature structure, which steadily shifts outward with time. Our models reconstruct the full spectrally and temporally resolved history of an M stars UV radiation, including the unobservable EUV radiation, which drives planetary atmospheric escape, directly impacting a planets potential for habitability.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا