No Arabic abstract
Many-body non-equilibrium steady states can be described by a Landau-Ginzburg theory if one allows non-analytic terms in the potential. We substantiate this claim by working out the case of the Ising magnet in contact with a thermal bath and undergoing stochastic reheating: It is reset to a paramagnet at random times. By a combination of stochastic field theory and Monte Carlo simulations, we unveil how the usual $varphi^4$ potential is deformed by non-analytic operators of intrinsic non-equilibrium nature. We demonstrate their infrared relevance at low temperatures by a renormalization-group analysis of the non-equilibrium steady state. The equilibrium ferromagnetic fixed point is thus destabilized by stochastic reheating, and we identify the new non-equilibrium fixed point.
We introduce a model of interacting lattices at different resolutions driven by the two-dimensional Ising dynamics with a nearest-neighbor interaction. We study this model both with tools borrowed from equilibrium statistical mechanics as well as non-equilibrium thermodynamics. Our findings show that this model keeps the signature of the equilibrium phase transition. Moreover the critical temperature of the equilibrium models correspond to the state maximizing the entropy and delimits two out-of-equilibrium regimes, one satisfying the Onsager relations for systems close to equilibrium and one resembling convective turbulent states. Since the model preserves the entropy and energy fluxes in the scale space, it seems a good candidate for parametric studies of out-of-equilibrium turbulent systems.
We study numerically the non-equilibrium critical properties of the Ising model defined on direct products of graphs, obtained from factor graphs without phase transition (Tc = 0). On this class of product graphs, the Ising model features a finite temperature phase transition, and we find a pattern of scaling behaviors analogous to the one known on regular lattices: Observables take a scaling form in terms of a function L(t) of time, with the meaning of a growing length inside which a coherent fractal structure, the critical state, is progressively formed. Computing universal quantities, such as the critical exponents and the limiting fluctuation-dissipation ratio X_infty, allows us to comment on the possibility to extend universality concepts to the critical behavior on inhomogeneous substrates.
Recently Mazenko and Das and Mazenko introduced a non-equilibrium field theoretical approach to describe the statistical properties of a classical particle ensemble starting from the microscopic equations of motion of each individual particle. We use this theory to investigate the transition from those microscopic degrees of freedom to the evolution equations of the macroscopic observables of the ensemble. For the free theory, we recover the continuity and Jeans equations of a collisionless gas. For a theory containing two-particle interactions in a canonical perturbation series, we find the macroscopic evolution equations to be described by the Born-Bogoliubov-Green-Kirkwood-Yvon hierarchy (BBGKY hierarchy) with a truncation criterion depending on the order in perturbation theory. This establishes a direct link between the classical and the field-theoretical approaches to kinetic theory that might serve as a starting point to investigate kinetic theory beyond the classical limits.
We use the non-equilibrium statistical field theory for classical particles recently developed by Mazenko and Das and Mazenko, together with the free generating functional for particles initially correlated in phase space derived in Bartelmann et al. to study the impact of initial correlations on the equation of state of real gases. We first show that we can reproduce the well known van der Waals equation of state for uncorrelated initial conditions using this approach. We then impose correlated initial conditions and study their qualitative and quantitative effect on the equation of state of a van der Waals gas. The correlations impose a significant correction to the pressure of an ideal gas which is an order of magnitude larger than the correction due to particle interactions.
We examine how systems in non-equilibrium steady states close to a continuous phase transition can still be described by a Landau potential if one forgoes the assumption of analyticity. In a system simultaneously coupled to several baths at different temperatures, the non-analytic potential arises from the different density of states of the baths. In periodically driven-dissipative systems, the role of multiple baths is played by a single bath transferring energy at different harmonics of the driving frequency. The mean-field critical exponents become dependent on the low-energy features of the two most singular baths. We propose an extension beyond mean field.