No Arabic abstract
Non-homogeneous Poisson processes are used in a wide range of scientific disciplines, ranging from the environmental sciences to the health sciences. Often, the central object of interest in a point process is the underlying intensity function. Here, we present a general model for the intensity function of a non-homogeneous Poisson process using measure transport. The model is built from a flexible bijective mapping that maps from the underlying intensity function of interest to a simpler reference intensity function. We enforce bijectivity by modeling the map as a composition of multiple simple bijective maps, and show that the model exhibits an important approximation property. Estimation of the flexible mapping is accomplished within an optimization framework, wherein computations are efficiently done using recent technological advances in deep learning and a graphics processing unit. Although we find that intensity function estimates obtained with our method are not necessarily superior to those obtained using conventional methods, the modeling representation brings with it other advantages such as facilitated point process simulation and uncertainty quantification. Modeling point processes in higher dimensions is also facilitated using our approach. We illustrate the use of our model on both simulated data, and a real data set containing the locations of seismic events near Fiji since 1964.
We introduce a non-homogeneous fractional Poisson process by replacing the time variable in the fractional Poisson process of renewal type with an appropriate function of time. We characterize the resulting process by deriving its non-local governing equation. We further compute the first and second moments of the process. Eventually, we derive the distribution of arrival times. Constant reference is made to previous known results in the homogeneous case and to how they can be derived from the specialization of the non-homogeneous process.
Statistical modeling of animal movement is of critical importance. The continuous trajectory of an animals movements is only observed at discrete, often irregularly spaced time points. Most existing models cannot handle the unequal sampling interval naturally and/or do not allow inactivity periods such as resting or sleeping. The recently proposed moving-resting (MR) model is a Brownian motion governed by a telegraph process, which allows periods of inactivity in one state of the telegraph process. The MR model shows promise in modeling the movements of predators with long inactive periods such as many felids, but the lack of accommodation of measurement errors seriously prohibits its application in practice. Here we incorporate measurement errors in the MR model and derive basic properties of the model. Inferences are based on a composite likelihood using the Markov property of the chain composed by every other observed increments. The performance of the method is validated in finite sample simulation studies. Application to the movement data of a mountain lion in Wyoming illustrates the utility of the method.
The Cox process is a stochastic process which generalises the Poisson process by letting the underlying intensity function itself be a stochastic process. In this paper we present a fast Bayesian inference scheme for the permanental process, a Cox process under which the square root of the intensity is a Gaussian process. In particular we exploit connections with reproducing kernel Hilbert spaces, to derive efficient approximate Bayesian inference algorithms based on the Laplace approximation to the predictive distribution and marginal likelihood. We obtain a simple algorithm which we apply to toy and real-world problems, obtaining orders of magnitude speed improvements over previous work.
The fractional non-homogeneous Poisson process was introduced by a time-change of the non-homogeneous Poisson process with the inverse $alpha$-stable subordinator. We propose a similar definition for the (non-homogeneous) fractional compound Poisson process. We give both finite-dimensional and functional limit theorems for the fractional non-homogeneous Poisson process and the fractional compound Poisson process. The results are derived by using martingale methods, regular variation properties and Anscombes theorem. Eventually, some of the limit results are verified in a Monte Carlo simulation.
Computational couplings of Markov chains provide a practical route to unbiased Monte Carlo estimation that can utilize parallel computation. However, these approaches depend crucially on chains meeting after a small number of transitions. For models that assign data into groups, e.g. mixture models, the obvious approaches to couple Gibbs samplers fail to meet quickly. This failure owes to the so-called label-switching problem; semantically equivalent relabelings of the groups contribute well-separated posterior modes that impede fast mixing and cause large meeting times. We here demonstrate how to avoid label switching by considering chains as exploring the space of partitions rather than labelings. Using a metric on this space, we employ an optimal transport coupling of the Gibbs conditionals. This coupling outperforms alternative couplings that rely on labelings and, on a real dataset, provides estimates more precise than usual ergodic averages in the limited time regime. Code is available at github.com/tinnguyen96/coupling-Gibbs-partition.