Do you want to publish a course? Click here

Primary Tumor Origin Classification of Lung Nodules in Spectral CT using Transfer Learning

195   0   0.0 ( 0 )
 Added by Veronika Cheplygina
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Early detection of lung cancer has been proven to decrease mortality significantly. A recent development in computed tomography (CT), spectral CT, can potentially improve diagnostic accuracy, as it yields more information per scan than regular CT. However, the shear workload involved with analyzing a large number of scans drives the need for automated diagnosis methods. Therefore, we propose a detection and classification system for lung nodules in CT scans. Furthermore, we want to observe whether spectral images can increase classifier performance. For the detection of nodules we trained a VGG-like 3D convolutional neural net (CNN). To obtain a primary tumor classifier for our dataset we pre-trained a 3D CNN with similar architecture on nodule malignancies of a large publicly available dataset, the LIDC-IDRI dataset. Subsequently we used this pre-trained network as feature extractor for the nodules in our dataset. The resulting feature vectors were classified into two (benign/malignant) and three (benign/primary lung cancer/metastases) classes using support vector machine (SVM). This classification was performed both on nodule- and scan-level. We obtained state-of-the art performance for detection and malignancy regression on the LIDC-IDRI database. Classification performance on our own dataset was higher for scan- than for nodule-level predictions. For the three-class scan-level classification we obtained an accuracy of 78%. Spectral features did increase classifier performance, but not significantly. Our work suggests that a pre-trained feature extractor can be used as primary tumor origin classifier for lung nodules, eliminating the need for elaborate fine-tuning of a new network and large datasets. Code is available at url{https://github.com/tueimage/lung-nodule-msc-2018}.



rate research

Read More

103 - Yamin Li , Jiancheng Yang , Yi Xu 2020
Follow-up serves an important role in the management of pulmonary nodules for lung cancer. Imaging diagnostic guidelines with expert consensus have been made to help radiologists make clinical decision for each patient. However, tumor growth is such a complicated process that it is difficult to stratify high-risk nodules from low-risk ones based on morphologic characteristics. On the other hand, recent deep learning studies using convolutional neural networks (CNNs) to predict the malignancy score of nodules, only provides clinicians with black-box predictions. To this end, we propose a unified framework, named Nodule Follow-Up Prediction Network (NoFoNet), which predicts the growth of pulmonary nodules with high-quality visual appearances and accurate quantitative results, given any time interval from baseline observations. It is achieved by predicting future displacement field of each voxel with a WarpNet. A TextureNet is further developed to refine textural details of WarpNet outputs. We also introduce techniques including Temporal Encoding Module and Warp Segmentation Loss to encourage time-aware and shape-aware representation learning. We build an in-house follow-up dataset from two medical centers to validate the effectiveness of the proposed method. NoFoNet significantly outperforms direct prediction by a U-Net in terms of visual quality; more importantly, it demonstrates accurate differentiating performance between high- and low-risk nodules. Our promising results suggest the potentials in computer aided intervention for lung nodule management.
Ultrasound (US) is a non-invasive yet effective medical diagnostic imaging technique for the COVID-19 global pandemic. However, due to complex feature behaviors and expensive annotations of US images, it is difficult to apply Artificial Intelligence (AI) assisting approaches for lungs multi-symptom (multi-label) classification. To overcome these difficulties, we propose a novel semi-supervised Two-Stream Active Learning (TSAL) method to model complicated features and reduce labeling costs in an iterative procedure. The core component of TSAL is the multi-label learning mechanism, in which label correlations information is used to design multi-label margin (MLM) strategy and confidence validation for automatically selecting informative samples and confident labels. On this basis, a multi-symptom multi-label (MSML) classification network is proposed to learn discriminative features of lung symptoms, and a human-machine interaction is exploited to confirm the final annotations that are used to fine-tune MSML with progressively labeled data. Moreover, a novel lung US dataset named COVID19-LUSMS is built, currently containing 71 clinical patients with 6,836 images sampled from 678 videos. Experimental evaluations show that TSAL using only 20% data can achieve superior performance to the baseline and the state-of-the-art. Qualitatively, visualization of both attention map and sample distribution confirms the good consistency with the clinic knowledge.
Deep learning-based methods have achieved promising performance in early detection and classification of lung nodules, most of which discard unsure nodules and simply deal with a binary classification -- malignant vs benign. Recently, an unsure data model (UDM) was proposed to incorporate those unsure nodules by formulating this problem as an ordinal regression, showing better performance over traditional binary classification. To further explore the ordinal relationship for lung nodule classification, this paper proposes a meta ordinal regression forest (MORF), which improves upon the state-of-the-art ordinal regression method, deep ordinal regression forest (DORF), in three major ways. First, MORF can alleviate the biases of the predictions by making full use of deep features while DORF needs to fix the composition of decision trees before training. Second, MORF has a novel grouped feature selection (GFS) module to re-sample the split nodes of decision trees. Last, combined with GFS, MORF is equipped with a meta learning-based weighting scheme to map the features selected by GFS to tree-wise weights while DORF assigns equal weights for all trees. Experimental results on the LIDC-IDRI dataset demonstrate superior performance over existing methods, including the state-of-the-art DORF.
Despite the widespread availability of in-treatment room cone beam computed tomography (CBCT) imaging, due to the lack of reliable segmentation methods, CBCT is only used for gross set up corrections in lung radiotherapies. Accurate and reliable auto-segmentation tools could potentiate volumetric response assessment and geometry-guided adaptive radiation therapies. Therefore, we developed a new deep learning CBCT lung tumor segmentation method. Methods: The key idea of our approach called cross modality educed distillation (CMEDL) is to use magnetic resonance imaging (MRI) to guide a CBCT segmentation network training to extract more informative features during training. We accomplish this by training an end-to-end network comprised of unpaired domain adaptation (UDA) and cross-domain segmentation distillation networks (SDN) using unpaired CBCT and MRI datasets. Feature distillation regularizes the student network to extract CBCT features that match the statistical distribution of MRI features extracted by the teacher network and obtain better differentiation of tumor from background.} We also compared against an alternative framework that used UDA with MR segmentation network, whereby segmentation was done on the synthesized pseudo MRI representation. All networks were trained with 216 weekly CBCTs and 82 T2-weighted turbo spin echo MRI acquired from different patient cohorts. Validation was done on 20 weekly CBCTs from patients not used in training. Independent testing was done on 38 weekly CBCTs from patients not used in training or validation. Segmentation accuracy was measured using surface Dice similarity coefficient (SDSC) and Hausdroff distance at 95th percentile (HD95) metrics.
Lack of large expert annotated MR datasets makes training deep learning models difficult. Therefore, a cross-modality (MR-CT) deep learning segmentation approach that augments training data using pseudo MR images produced by transforming expert-segmented CT images was developed. Eighty-One T2-weighted MRI scans from 28 patients with non-small cell lung cancers were analyzed. Cross-modality prior encoding the transformation of CT to pseudo MR images resembling T2w MRI was learned as a generative adversarial deep learning model. This model augmented training data arising from 6 expert-segmented T2w MR patient scans with 377 pseudo MRI from non-small cell lung cancer CT patient scans with obtained from the Cancer Imaging Archive. A two-dimensional Unet implemented with batch normalization was trained to segment the tumors from T2w MRI. This method was benchmarked against (a) standard data augmentation and two state-of-the art cross-modality pseudo MR-based augmentation and (b) two segmentation networks. Segmentation accuracy was computed using Dice similarity coefficient (DSC), Hausdroff distance metrics, and volume ratio. The proposed approach produced the lowest statistical variability in the intensity distribution between pseudo and T2w MR images measured as Kullback-Leibler divergence of 0.069. This method produced the highest segmentation accuracy with a DSC of 0.75 and the lowest Hausdroff distance on the test dataset. This approach produced highly similar estimations of tumor growth as an expert (P = 0.37). A novel deep learning MR segmentation was developed that overcomes the limitation of learning robust models from small datasets by leveraging learned cross-modality priors to augment training. The results show the feasibility of the approach and the corresponding improvement over the state-of-the-art methods.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا