No Arabic abstract
We give a complete solution to the Borel-Ritt problem in non-uniform spaces $mathscr{A}^-_{(M)}(S)$ of ultraholomorphic functions of Beurling type, where $S$ is an unbounded sector of the Riemann surface of the logarithm and $M$ is a strongly regular weight sequence. Namely, we characterize the surjectivity and the existence of a continuous linear right inverse of the asymptotic Borel map on $mathscr{A}^-_{(M)}(S)$ in terms of the aperture of the sector $S$ and the weight sequence $M$. Our work improves previous results by Thilliez [10] and Schmets and Valdivia [9].
We study the injectivity and surjectivity of the Borel map in three instances: in Roumieu-Carleman ultraholomorphic classes in unbounded sectors of the Riemann surface of the logarithm, and in classes of functions admitting, uniform or nonuniform, asymptotic expansion at the corresponding vertex. These classes are defined in terms of a log-convex sequence $mathbb{M}$ of positive real numbers. Injectivity had been solved in two of these cases by S. Mandelbrojt and B. Rodriguez-Salinas, respectively, and we completely solve the third one by means of the theory of proximate orders. A growth index $omega(mathbb{M})$ turns out to put apart the values of the opening of the sector for which injectivity holds or not. In the case of surjectivity, only some partial results were available by J. Schmets and M. Valdivia and by V. Thilliez, and this last author introduced an index $gamma(mathbb{M})$ (generally different from $omega(mathbb{M})$) for this problem, whose optimality was not established except for the Gevrey case. We considerably extend here their results, proving that $gamma(mathbb{M})$ is indeed optimal in some standard situations (for example, as far as $mathbb{M}$ is strongly regular) and puts apart the values of the opening of the sector for which surjectivity holds or not.
We prove an extension theorem for ultraholomorphic classes defined by so-called Braun-Meise-Taylor weight functions and transfer the proofs from the single weight sequence case from V. Thilliez [28] to the weight function setting. We are following a different approach than the results obtained in [11], more precisely we are working with real methods by applying the ultradifferentiable Whitney-extension theorem. We are treating both the Roumieu and the Beurling case, the latter one is obtained by a reduction from the Roumieu case.
We study the surjectivity of, and the existence of right inverses for, the asymptotic Borel map in Carleman-Roumieu ultraholomorphic classes defined by regular sequences in the sense of E. M. Dynkin. We extend previous results by J. Schmets and M. Valdivia, by V. Thilliez, and by the authors, and show the prominent role played by an index associated with the sequence and introduced by Thilliez. The techniques involve regular variation, integral transforms and characterization results of A. Debrouwere in a half-plane, steming from his study of the surjectivity of the moment mapping in general Gelfand-Shilov spaces.
We investigate Beurling-Fourier algebras, a weighted version of Fourier algebras, on various Lie groups focusing on their spectral analysis. We will introduce a refined general definition of weights on the dual of locally compact groups and their associated Beurling-Fourier algebras. Constructions of nontrivial weights will be presented focusing on the cases of representative examples of Lie groups, namely $SU(n)$, the Heisenberg group $mathbb{H}$, the reduced Heisenberg group $mathbb{H}_r$, the Euclidean motion group $E(2)$ and its simply connected cover $widetilde{E}(2)$. We will determine the spectrum of Beurling-Fourier algebras on each of the aforementioned groups emphasizing its connection to the complexification of underlying Lie groups. We also demonstrate polynomially growing weights does not change the spectrum and show the associated regularity of the resulting Beurling-Fourier algebras.
We introduce a general multisummability theory of formal power series in Carleman ultraholomorphic classes. The finitely many levels of summation are determined by pairwise comparable, nonequivalent weight sequences admitting nonzero proximate orders and whose growth indices are distinct. Thus, we extend the powerful multisummability theory for finitely many Gevrey levels, developed by J.-P. Ramis, J. Ecalle and W. Balser, among others. We provide both the analytical and cohomological approaches, and obtain a reconstruction formula for the multisum of a multisummable series by means of iterated generalized Laplace-like operators.