Do you want to publish a course? Click here

Surjectivity of the asymptotic Borel map in Carleman-Roumieu ultraholomorphic classes defined by regular sequences

74   0   0.0 ( 0 )
 Added by Javier Sanz
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We study the surjectivity of, and the existence of right inverses for, the asymptotic Borel map in Carleman-Roumieu ultraholomorphic classes defined by regular sequences in the sense of E. M. Dynkin. We extend previous results by J. Schmets and M. Valdivia, by V. Thilliez, and by the authors, and show the prominent role played by an index associated with the sequence and introduced by Thilliez. The techniques involve regular variation, integral transforms and characterization results of A. Debrouwere in a half-plane, steming from his study of the surjectivity of the moment mapping in general Gelfand-Shilov spaces.



rate research

Read More

We study the injectivity and surjectivity of the Borel map in three instances: in Roumieu-Carleman ultraholomorphic classes in unbounded sectors of the Riemann surface of the logarithm, and in classes of functions admitting, uniform or nonuniform, asymptotic expansion at the corresponding vertex. These classes are defined in terms of a log-convex sequence $mathbb{M}$ of positive real numbers. Injectivity had been solved in two of these cases by S. Mandelbrojt and B. Rodriguez-Salinas, respectively, and we completely solve the third one by means of the theory of proximate orders. A growth index $omega(mathbb{M})$ turns out to put apart the values of the opening of the sector for which injectivity holds or not. In the case of surjectivity, only some partial results were available by J. Schmets and M. Valdivia and by V. Thilliez, and this last author introduced an index $gamma(mathbb{M})$ (generally different from $omega(mathbb{M})$) for this problem, whose optimality was not established except for the Gevrey case. We considerably extend here their results, proving that $gamma(mathbb{M})$ is indeed optimal in some standard situations (for example, as far as $mathbb{M}$ is strongly regular) and puts apart the values of the opening of the sector for which surjectivity holds or not.
We introduce a general multisummability theory of formal power series in Carleman ultraholomorphic classes. The finitely many levels of summation are determined by pairwise comparable, nonequivalent weight sequences admitting nonzero proximate orders and whose growth indices are distinct. Thus, we extend the powerful multisummability theory for finitely many Gevrey levels, developed by J.-P. Ramis, J. Ecalle and W. Balser, among others. We provide both the analytical and cohomological approaches, and obtain a reconstruction formula for the multisum of a multisummable series by means of iterated generalized Laplace-like operators.
170 - Andreas Debrouwere 2020
We give a complete solution to the Borel-Ritt problem in non-uniform spaces $mathscr{A}^-_{(M)}(S)$ of ultraholomorphic functions of Beurling type, where $S$ is an unbounded sector of the Riemann surface of the logarithm and $M$ is a strongly regular weight sequence. Namely, we characterize the surjectivity and the existence of a continuous linear right inverse of the asymptotic Borel map on $mathscr{A}^-_{(M)}(S)$ in terms of the aperture of the sector $S$ and the weight sequence $M$. Our work improves previous results by Thilliez [10] and Schmets and Valdivia [9].
We prove an extension theorem for ultraholomorphic classes defined by so-called Braun-Meise-Taylor weight functions and transfer the proofs from the single weight sequence case from V. Thilliez [28] to the weight function setting. We are following a different approach than the results obtained in [11], more precisely we are working with real methods by applying the ultradifferentiable Whitney-extension theorem. We are treating both the Roumieu and the Beurling case, the latter one is obtained by a reduction from the Roumieu case.
In this note, we frst consider boundedness properties of a family of operators generalizing the Hilbert operator in the upper triangle case. In the diagonal case, we give the exact norm of these operators under some restrictions on the parameters. We secondly consider boundedness properties of a family of positive Bergman-type operators of the upper-half plane. We give necessary and sufficient conditions on the parameters under which these operators are bounded in the upper triangle case.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا