Do you want to publish a course? Click here

Recent Progress on Particle Acceleration and Reconnection Physics during Magnetic Reconnectionin the Magnetically-dominated Relativistic Regime

362   0   0.0 ( 0 )
 Added by Fan Guo
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Magnetic reconnection in strongly magnetized astrophysical plasma environments is believed to be the primary process for fast energy release and particle energization. Currently there is strong interest in relativistic magnetic reconnection, in that it may provide a new explanation for high-energy particle acceleration and radiation in strongly magnetized astrophysical systems. We review recent advances in particle acceleration and reconnection physics in the magnetically-dominated regime. More discussion is focused on the physics of particle acceleration, power-law formation as well as the reconnection rate problem. In addition, we provide an outlook for studying reconnection acceleration mechanisms and kinetic physics in the next step.



rate research

Read More

We investigate the distribution of particle acceleration sites, independently of the actual acceleration mechanism, during plasmoid-dominated, relativistic collisionless magnetic reconnection by analyzing the results of a particle-in-cell numerical simulation. The simulation is initiated with Harris-type current layers in pair plasma with no guide magnetic field, negligible radiative losses, no initial perturbation, and using periodic boundary conditions. We find that the plasmoids develop a robust internal structure, with colder dense cores and hotter outer shells, that is recovered after each plasmoid merger on a dynamical time scale. We use spacetime diagrams of the reconnection layers to probe the evolution of plasmoids, and in this context we investigate the individual particle histories for a representative sample of energetic electrons. We distinguish three classes of particle acceleration sites associated with (1) magnetic X-points, (2) regions between merging plasmoids, and (3) the trailing edges of accelerating plasmoids. We evaluate the contribution of each class of acceleration sites to the final energy distribution of energetic electrons -- magnetic X-points dominate at moderate energies, and the regions between merging plasmoids dominate at higher energies. We also identify the dominant acceleration scenarios, in order of decreasing importance -- (1) single acceleration between merging plasmoids, (2) single acceleration at a magnetic X-point, and (3) acceleration at a magnetic X-point followed by acceleration in a plasmoid. Particle acceleration is absent only in the vicinity of stationary plasmoids. The effect of magnetic mirrors due to plasmoid contraction does not appear to be significant in relativistic reconnection.
136 - Wei Liu , Hui Li , Lin Yin 2010
We present large scale 3D particle-in-cell (PIC) simulations to examine particle energization in magnetic reconnection of relativistic electron-positron (pair) plasmas. The initial configuration is set up as a relativistic Harris equilibrium without a guide field. These simulations are large enough to accommodate a sufficient number of tearing and kink modes. Contrary to the non-relativistic limit, the linear tearing instability is faster than the linear kink instability, at least in our specific parameters. We find that the magnetic energy dissipation is first facilitated by the tearing instability and followed by the secondary kink instability. Particles are mostly energized inside the magnetic islands during the tearing stage due to the spatially varying electric fields produced by the outflows from reconnection. Secondary kink instability leads to additional particle acceleration. Accelerated particles are, however, observed to be thermalized quickly. The large amplitude of the vertical magnetic field resulting from the tearing modes by the secondary kink modes further help thermalizing the non-thermal particles generated from the secondary kink instability. Implications of these results for astrophysics are briefly discussed.
Magnetic reconnection, especially in the relativistic regime, provides an efficient mechanism for accelerating relativistic particles and thus offers an attractive physical explanation for nonthermal high-energy emission from various astrophysical sources. I present a simple analytical model that elucidates key physical processes responsible for reconnection-driven relativistic nonthermal particle acceleration (NTPA) in the large-system, plasmoid-dominated regime in two dimensions. The model aims to explain the numerically-observed dependencies of the power-law index $p$ and high-energy cutoff $gamma_c$ of the resulting nonthermal particle energy spectrum $f(gamma)$ on the ambient plasma magnetization $sigma$, and (for $gamma_c$) on the system size $L$. In this self-similar model, energetic particles are continuously accelerated by the out-of-plane reconnection electric field $E_{rm rec}$ until they become magnetized by the reconnected magnetic field and eventually trapped in plasmoids large enough to confine them. The model also includes diffusive Fermi acceleration by particle bouncing off rapidly moving plasmoids. I argue that the balance between electric acceleration and magnetization controls the power-law index, while trapping in plasmoids governs the cutoff, thus tying the particle energy spectrum to the plasmoid distribution.
During magnetically dominated relativistic reconnection, inflowing plasma depletes the initial relativistic pressure at the x-line and collisionless plasma heating inside the diffusion region is insufficient to overcome this loss. The resulting pressure drop causes a collapse at the x-line, essentially a localization mechanism of the diffusion region necessary for fast reconnection. The extension of this low-pressure region further explains the bursty nature of anti-parallel reconnection because a once opened outflow exhaust can also collapse, which repeatedly triggers secondary tearing islands. However, a stable single x-line reconnection can be achieved when an external guide field exists, since the reconnecting magnetic field component rotates out of the reconnection plane at outflows, providing additional magnetic pressure to sustain the opened exhausts.
Particle acceleration in magnetized relativistic jets still puzzles theorists, specially when one tries to explain the highly variable emission observed in blazar jets or gamma-ray bursts putting severe constraints on current models. In this work we investigate the acceleration of particles injected in a three-dimensional relativistic magnetohydrodynamical jet subject to current driven kink instability (CDKI), which drives turbulence and fast magnetic reconnection. Test protons injected in the nearly stationary snapshots of the jet, experience an exponential acceleration up to a maximum energy. For a background magnetic field of $B sim 0.1$ G, this saturation energy is $sim 10^{16}$ eV, while for $B sim 10$ G it is $sim 10^{18}$ eV. The simulations also reveal a clear association of the accelerated particles with the regions of fast reconnection. In the early stages of the development of the non-linear growth of CDKI in the jet, when there are still no sites of fast reconnection, injected particles are also efficiently accelerated, but by magnetic curvature drift in the wiggling jet spine. However, they have to be injected with an initial energy much larger than that required for particles to accelerate in reconnection sites. Finally, we have also obtained from the simulations an acceleration time due to reconnection with a weak dependence on the particles energy $E$, $t_A propto E^{0.1}$. The energy spectrum of the accelerated particles develops a high energy tail with a power law index $p sim$ -1.2 in the beginning of the acceleration, in agreement with earlier works. Our results provide an appropriate multi-dimensional framework for exploring this process in real systems and explain their complex emission patterns, specially in the very high energy bands and the associated neutrino emission recently detected in some blazars.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا