Do you want to publish a course? Click here

TRAPPIST-1: Global Results of the Spitzer Exploration Science Program {it Red Worlds}

110   0   0.0 ( 0 )
 Added by Elsa Ducrot
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

With more than 1000 hours of observation from Feb 2016 to Oct 2019, the Spitzer Exploration Program Red Worlds (ID: 13067, 13175 and 14223) exclusively targeted TRAPPIST-1, a nearby (12pc) ultracool dwarf star orbited by seven transiting Earth-sized planets, all well-suited for a detailed atmospheric characterization with the upcoming JWST. In this paper, we present the global results of the project. We analyzed 88 new transits and combined them with 100 previously analyzed transits, for a total of 188 transits observed at 3.6 or 4.5 $mu$m. We also analyzed 29 occultations (secondary eclipses) of planet b and eight occultations of planet c observed at 4.5 $mu$m to constrain the brightness temperatures of their daysides. We identify several orphan transit-like structures in our Spitzer photometry, but all of them are of low significance. We do not confirm any new transiting planets. We estimate for TRAPPIST-1 transit depth measurements mean noise floors of $sim$35 and 25 ppm in channels 1 and 2 of Spitzer/IRAC, respectively. most of this noise floor is of instrumental origins and due to the large inter-pixel inhomogeneity of IRAC InSb arrays, and that the much better interpixel homogeneity of JWST instruments should result in noise floors as low as 10ppm, which is low enough to enable the atmospheric characterization of the planets by transit transmission spectroscopy. We construct updated broadband transmission spectra for all seven planets which show consistent transit depths between the two Spitzer channels. We identify and model five distinct high energy flares in the whole dataset, and discuss our results in the context of habitability. Finally, we fail to detect occultation signals of planets b and c at 4.5 $mu$m, and can only set 3$sigma$ upper limits on their dayside brightness temperatures (611K for b 586K for c).



rate research

Read More

Near Earth Objects (NEOs) are small Solar System bodies whose orbits bring them close to the Earths orbit. We are carrying out a Warm Spitzer Cycle 11 Exploration Science program entitled NEOSurvey --- a fast and efficient flux-limited survey of 597 known NEOs in which we derive diameter and albedo for each target. The vast majority of our targets are too faint to be observed by NEOWISE, though a small sample has been or will be observed by both observatories, which allows for a cross-check of our mutual results. Our primary goal is to create a large and uniform catalog of NEO properties. We present here the first results from this new program: fluxes and derived diameters and albedos for 80 NEOs, together with a description of the overall program and approach, including several updates to our thermal model. The largest source of error in our diameter and albedo solutions, which derive from our single band thermal emission measurements, is uncertainty in eta, the beaming parameter used in our thermal modeling; for albedos, improvements in Solar System absolute magnitudes would also help significantly. All data and derived diameters and albedos from this entire program are being posted on a publicly accessible webpage at nearearthobjects.nau.edu .
The 27 satellites of Uranus are enigmatic, with dark surfaces coated by material that could be rich in organics. Voyager 2 imaged the southern hemispheres of Uranus five largest classical moons Miranda, Ariel, Umbriel, Titania, and Oberon, as well as the largest ring moon Puck, but their northern hemispheres were largely unobservable at the time of the flyby and were not imaged. Additionally, no spatially resolved datasets exist for the other 21 known moons, and their surface properties are essentially unknown. Because Voyager 2 was not equipped with a near-infrared mapping spectrometer, our knowledge of the Uranian moons surface compositions, and the processes that modify them, is limited to disk-integrated datasets collected by ground- and space-based telescopes. Nevertheless, images collected by the Imaging Science System on Voyager 2 and reflectance spectra collected by telescope facilities indicate that the five classical moons are candidate ocean worlds that might currently have, or had, liquid subsurface layers beneath their icy surfaces. To determine whether these moons are ocean worlds, and investigate Uranus ring moons and irregular satellites, close-up observations and measurements made by instruments onboard a Uranus orbiter are needed.
Context. The TRAPPIST-1 system hosts seven Earth-sized, temperate exoplanets orbiting an ultra-cool dwarf star. As such, it represents a remarkable setting to study the formation and evolution of terrestrial planets that formed in the same protoplanetary disk. While the sizes of the TRAPPIST-1 planets are all known to better than 5% precision, their densities have significant uncertainties (between 28% and 95%) because of poor constraints on the planets masses. Aims.The goal of this paper is to improve our knowledge of the TRAPPIST-1 planetary masses and densities using transit-timing variations (TTV). The complexity of the TTV inversion problem is known to be particularly acute in multi-planetary systems (convergence issues, degeneracies and size of the parameter space), especially for resonant chain systems such as TRAPPIST-1. Methods. To overcome these challenges, we have used a novel method that employs a genetic algorithm coupled to a full N-body integrator that we applied to a set of 284 individual transit timings. This approach enables us to efficiently explore the parameter space and to derive reliable masses and densities from TTVs for all seven planets. Results. Our new masses result in a five- to eight-fold improvement on the planetary density uncertainties, with precisions ranging from 5% to 12%. These updated values provide new insights into the bulk structure of the TRAPPIST-1 planets. We find that TRAPPIST-1,c and e likely have largely rocky interiors, while planets b, d, f, g, and h require envelopes of volatiles in the form of thick atmospheres, oceans, or ice, in most cases with water mass fractions less than 5%.
We present 3-160 micron photometry obtained with the IRAC and MIPS instruments for the first five targets from the Spitzer Legacy Science Program Formation and Evolution of Planetary Systems and 4-35 micron spectro-photometry obtained with the IRS for two sources. We discuss in detail our observations of the debris disks surrounding HD 105 (G0V, 30 +- 10 Myr) and HD 150706 (G3V, ~ 700 +- 300 Myr). For HD 105, possible interpretations include large bodies clearing the dust inside of 45 AU or a reservoir of gas capable of sculpting the dust distribution. The disk surrounding HD 150706 also exhibits evidence of a large inner hole in its dust distribution. Of the four survey targets without previously detected IR excess, spanning ages 30 Myr to 3 Gyr, the new detection of excess in just one system of intermediate age suggests a variety of initial conditions or divergent evolutionary paths for debris disk systems orbiting solar-type stars.
We conducted a global analysis of the TRAPPIST Ultra-Cool Dwarf Transit Survey - a prototype of the SPECULOOS transit search conducted with the TRAPPIST-South robotic telescope in Chile from 2011 to 2017 - to estimate the occurrence rate of close-in planets such as TRAPPIST-1b orbiting ultra-cool dwarfs. For this purpose, the photometric data of 40 nearby ultra-cool dwarfs were reanalysed in a self-consistent and fully automated manner starting from the raw images. The pipeline developed specifically for this task generates differential light curves, removes non-planetary photometric features and stellar variability, and searches for transits. It identifies the transits of TRAPPIST-1b and TRAPPIST-1c without any human intervention. To test the pipeline and the potential output of similar surveys, we injected planetary transits into the light curves on a star-by-star basis and tested whether the pipeline is able to detect them. The achieved photometric precision enables us to identify Earth-sized planets orbiting ultra-cool dwarfs as validated by the injection tests. Our planet-injection simulation further suggests a lower limit of 10 per cent on the occurrence rate of planets similar to TRAPPIST-1b with a radius between 1 and 1.3 $R_oplus$ and the orbital period between 1.4 and 1.8 days.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا