Do you want to publish a course? Click here

Global Analysis of the TRAPPIST Ultra-Cool Dwarf Transit Survey

90   0   0.0 ( 0 )
 Added by Florian Lienhard
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We conducted a global analysis of the TRAPPIST Ultra-Cool Dwarf Transit Survey - a prototype of the SPECULOOS transit search conducted with the TRAPPIST-South robotic telescope in Chile from 2011 to 2017 - to estimate the occurrence rate of close-in planets such as TRAPPIST-1b orbiting ultra-cool dwarfs. For this purpose, the photometric data of 40 nearby ultra-cool dwarfs were reanalysed in a self-consistent and fully automated manner starting from the raw images. The pipeline developed specifically for this task generates differential light curves, removes non-planetary photometric features and stellar variability, and searches for transits. It identifies the transits of TRAPPIST-1b and TRAPPIST-1c without any human intervention. To test the pipeline and the potential output of similar surveys, we injected planetary transits into the light curves on a star-by-star basis and tested whether the pipeline is able to detect them. The achieved photometric precision enables us to identify Earth-sized planets orbiting ultra-cool dwarfs as validated by the injection tests. Our planet-injection simulation further suggests a lower limit of 10 per cent on the occurrence rate of planets similar to TRAPPIST-1b with a radius between 1 and 1.3 $R_oplus$ and the orbital period between 1.4 and 1.8 days.



rate research

Read More

TRAPPIST-1 is a fantastic nearby (~39.14 light years) planetary system made of at least seven transiting terrestrial-size, terrestrial-mass planets all receiving a moderate amount of irradiation. To date, this is the most observationally favourable system of potentially habitable planets. Since the announcement of the discovery of TRAPPIST-1 planets in 2016, a growing number of techniques and approaches have been used and proposed to reveal its true nature. Here we have compiled a state-of-the-art overview of all the observational and theoretical constraints that have been obtained so far using these techniques and approaches. The goal is to get a better understanding of whether or not TRAPPIST-1 planets can have atmospheres, and if so, what they are made of. For this, we surveyed the literature on TRAPPIST-1 about topics as broad as irradiation environment, orbital architecture, transit observations, density measurements, stellar contamination, and numerical climate and escape models. Each of these topics adds a brick to our understanding of the likely atmospheres of the seven planets. We show that (i) HST transit observations, (ii) density measurements, (iii) atmospheric escape modelling, and (iv) gas accretion modelling altogether offer solid evidence against the presence of H2-dominated atmospheres around TRAPPIST-1 planets. This means they likely have either (i) a high molecular weight atmosphere or (ii) no atmosphere at all. There are several key challenges ahead to characterize the bulk compositions of the atmospheres (if present) of TRAPPIST-1 planets. The main one so far is characterizing and correcting for the effects of stellar contamination. Fortunately, a new wave of observations with the James Webb Space Telescope and near-infrared high-resolution ground-based spectrographs on very large telescopes will bring significant advances in the coming decade.
Stellar photometric variability and instrumental effects, like cosmic ray hits, data discontinuities, data leaks, instrument aging etc. cause difficulties in the characterization of exoplanets and have an impact on the accuracy and precision of the modelling and detectability of transits, occultations and phase curves. This paper aims to make an attempt to improve the transit, occultation and phase-curve modelling in the presence of strong stellar variability and instrumental noise. We invoke the wavelet-formulation to reach this goal. We explore the capabilities of the software package Transit and Light Curve Modeller (TLCM). It is able to perform a joint radial velocity and light curve fit or light curve fit only. It models the transit, occultation, beaming, ellipsoidal and reflection effects in the light curves (including the gravity darkening effect, too). The red-noise, the stellar variability and instrumental effects are modelled via wavelets. The wavelet-fit is constrained by prescribing that the final white noise level must be equal to the average of the uncertainties of the photometric data points. This helps to avoid the overfit and regularizes the noise model. The approach was tested by injecting synthetic light curves into Keplers short cadence data and then modelling them. The method performs well over a certain signal-to-noise (S/N) ratio. In general a S/N ratio of 10 is needed to get good results but some parameters requires larger S/N, some others can be retrieved at lower S/Ns. We give limits in terms of signal-to-noise ratio for every studied system parameter which is needed to accurate parameter retrieval. The wavelet-approach is able to manage and to remove the impacts of data discontinuities, cosmic ray events, long-term stellar variability and instrument ageing, short term stellar variability and pulsation and flares among others. (...)
We describe the Next Generation Transit Survey (NGTS), which is a ground-based project searching for transiting exoplanets orbiting bright stars. NGTS builds on the legacy of previous surveys, most notably WASP, and is designed to achieve higher phot ometric precision and hence find smaller planets than have previously been detected from the ground. It also operates in red light, maximising sensitivity to late K and early M dwarf stars. The survey specifications call for photometric precision of 0.1 per cent in red light over an instantaneous field of view of 100 square degrees, enabling the detection of Neptune-sized exoplanets around Sun-like stars and super-Earths around M dwarfs. The survey is carried out with a purpose-built facility at Cerro Paranal, Chile, which is the premier site of the European Southern Observatory (ESO). An array of twelve 20cm f/2.8 telescopes fitted with back-illuminated deep-depletion CCD cameras are used to survey fields intensively at intermediate Galactic latitudes. The instrument is also ideally suited to ground-based photometric follow-up of exoplanet candidates from space telescopes such as TESS, Gaia and PLATO. We present observations that combine precise autoguiding and the superb observing conditions at Paranal to provide routine photometric precision of 0.1 per cent in 1 hour for stars with I-band magnitudes brighter than 13. We describe the instrument and data analysis methods as well as the status of the survey, which achieved first light in 2015 and began full survey operations in 2016. NGTS data will be made publicly available through the ESO archive.
Radio and X-ray emission from brown dwarfs suggest that an ionised gas and a magnetic field with a sufficient flux density must be present. We perform a reference study for late M-dwarfs, brown dwarfs and giant gas planet to identify which ultra-cool objects are most susceptible to plasma and magnetic processes. Only thermal ionisation is considered. We utilise the {sc Drift-Phoenix} model grid where the local atmospheric structure is determined by the global parameters T$_{rm eff}$, $log(g)$ and [M/H]. Our results show that it is not unreasonable to expect H$_{alpha}$ or radio emission to origin from Brown Dwarf atmospheres as in particular the rarefied upper parts of the atmospheres can be magnetically coupled despite having low degrees of thermal gas ionisation. Such ultra-cool atmospheres could therefore drive auroral emission without the need for a companions wind or an outgassing moon. The minimum threshold for the magnetic flux density required for electrons and ions to be magnetised is well above typical values of the global magnetic field of a brown dwarf and a giant gas planet. Na$^{+}$, K$^{+}$ and Ca$^{+}$ are the dominating electron donors in low-density atmospheres (low log(g), solar metallicity) independent of T$_{rm eff}$. Mg$^{+}$ and Fe$^{+}$ dominate the thermal ionisation in the inner parts of M-dwarf atmospheres. Molecules remain unimportant for thermal ionisation. Chemical processes (e.g. cloud formation) affecting the most abundant electron donors, Mg and Fe, will have a direct impact on the state of ionisation in ultra-cool atmospheres.
The CHEOPS space mission dedicated to exoplanet follow-up was launched in December 2019, equipped with the capacity to perform photometric measurements at the 20 ppm level. As CHEOPS carries out its observations in a broad optical passband, it can provide insights into the reflected light from exoplanets and constrain the short-wavelength thermal emission for the hottest of planets by observing occultations and phase curves. Here, we report the first CHEOPS observation of an occultation, namely, that of the hot Jupiter WASP-189b, a $M_P approx 2 M_J$ planet orbiting an A-type star. We detected the occultation of WASP-189 b at high significance in individual measurements and derived an occultation depth of $dF = 87.9 pm 4.3$ppm based on four occultations. We compared these measurements to model predictions and we find that they are consistent with an unreflective atmosphere heated to a temperature of $3435 pm 27$K, when assuming inefficient heat redistribution. Furthermore, we present two transits of WASP-189b observed by CHEOPS. These transits have an asymmetric shape that we attribute to gravity darkening of the host star caused by its high rotation rate. We used these measurements to refine the planetary parameters, finding a $sim25%$ deeper transit compared to the discovery paper and updating the radius of WASP-189b to $1.619pm0.021 R_J$. We further measured the projected orbital obliquity to be $lambda = 86.4^{+2.9}_{-4.4}$deg, a value that is in good agreement with a previous measurement from spectroscopic observations, and derived a true obliquity of $Psi = 85.4pm4.3$deg. Finally, we provide reference values for the photometric precision attained by the CHEOPS satellite: for the V=6.6 mag star, and using a one-hour binning, we obtain a residual RMS between 10 and 17ppm on the individual light curves, and 5.7ppm when combining the four visits.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا