Do you want to publish a course? Click here

Magnetic structure and exchange interactions in the layered semiconductor CrPS4

369   0   0.0 ( 0 )
 Added by Stuart Calder
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Compounds with two-dimensional (2D) layers of magnetic ions weakly connected by van der Waals bonding offer routes to enhance quantum behavior, stimulating both fundamental and applied interest. CrPS4 is one such magnetic van der Waals material, however, it has undergone only limited investigation. Here we present a comprehensive series of neutron scattering measurements to determine the magnetic structure and exchange interactions. The observed magnetic excitations allow a high degree of constraint on the model parameters not normally associated with measurements on a powder sample. The results demonstrate the 2D nature of the magnetic interactions, while also revealing the importance of interactions along 1D chains within the layers. The subtle role of competing interactions is observed, which manifest in a non-trivial magnetic transition and a tunable magnetic structure in a small applied magnetic field through a spin-flop transition. Our results on the bulk compound provide insights that can be applied to an understanding of the behavior of reduced layer CrPS4.



rate research

Read More

The high-temperature ferromagnet MnBi continues to receive attention as a candidate to replace rare-earth-containing permanent magnets in applications above room temperature. This is due to a high Curie temperature, large magnetic moments, and a coercivity that increases with temperature. The synthesis of MnBi also allows for crystals that are free of interstitial Mn, enabling more direct access to the key interactions underlying the physical properties of binary Mn-based ferromagnets. In this work, we use inelastic neutron scattering to measure the spin waves of MnBi in order to characterize the magnetic exchange at low temperature. Consistent with the spin reorientation that occurs below 140 K, we do not observe a spin gap in this system above our experimental resolution. A Heisenberg model was fit to the spin wave data in order to characterize the long-range nature of the exchange. It was found that interactions up to sixth nearest neighbor are required to fully parameterize the spin waves. Surprisingly, the nearest-neighbor term is antiferromagnetic, and the realization of a ferromagnetic ground state relies on the more numerous ferromagnetic terms beyond nearest neighbor, suggesting that the ferromagnetic ground state arises as a consequence of the long-ranged interactions in the system.
Two-dimensional van der Waals compounds with magnetic ions on a honeycomb lattice are hosts to a variety of exotic behavior. The magnetic interactions in one such compound, MnPSe$_3$, are investigated with elastic and inelastic neutron scattering. Magnetic excitations are observed in the magnetically ordered regime and persist to temperatures well above the ordering temperature, $rm T_N$ = 74 K, consistent with low dimensional magnetic interactions. The inelastic neutron scattering results allow a model spin Hamiltonian to be presented that includes dominant intralayer interactions of $J_{1ab}$=0.45 meV, $J_{2ab}$=0.03 meV, $J_{3ab}$=0.19 meV, and appreciable interlayer interactions of $J_c$=0.031(5) meV. No evidence for anisotropy in the form of a spin-gap is observed in the data collected. The measurements on MnPSe$_3$ are contrasted with those on MnPS$_3$ and reveal a large increase in the interlayer exchange interactions in MnPSe$_3$, despite the quasi-2D magnetic behavior.
A 20% substitution of Bi with La in the perovskite Bi1-xLaxFe0.5Sc0.5O3 system obtained under high-pressure and high-temperature conditions has been found to induce an incommensurately modulated structural phase. The room temperature X-ray and neutron powder diffraction patterns of this phase were successfully refined using the Imma(0,0,g)s00 superspace group (g=0.534(3)) with the modulation applied to Bi/La- and oxygen displacements. The modulated structure is closely related to the prototype antiferroelectric structure of PbZrO3 which can be considered as the lock-in variant of the latter with g =0.5. Below T_N = 220 K, the neutron diffraction data provide evidence for a long-range G-type antiferromagnetic ordering commensurate with the average Imma structure. Based on a general symmetry consideration, we show that the direction of the spins is controlled by the antisymmetric exchange imposed by the two primary structural distortions, namely oxygen octahedral tilting and incommensurate atomic displacements. The tilting is responsible for the onset of a weak ferromagnetism, observed in magnetization measurements, whereas the incommensurate displacive mode is dictated by the symmetry to couple a spin-density wave. The obtained results demonstrate that antisymmetric exchange is the dominant anisotropic interaction in Fe3+ based distorted perovskites with a nearly quenched orbital degree of freedom.
Establishing the physical mechanism governing exchange interactions is fundamental for exploring exotic phases such as the quantum spin liquids (QSLs) in real materials. In this work, we address exchange interactions in Sr2CuTe$_{1-x}$W$_{x}$O, a series of double perovskites that realize the spin-1/2 square lattice and were suggested to harbor a QSL ground state arising from random distribution of non-magnetic ions. Our {it ab initio} multi-reference configuration interaction calculations show that replacing Te atoms with W atoms changes the dominant couplings from nearest to next-nearest neighbor explained by the crucial role of unoccupied states of non-magnetic ions in the super-superexchange mechanism. Combined with spin-wave theory simulations, our calculated exchange couplings provide an excellent description of the inelastic neutron scattering spectra of the end compounds, as well as explain the magnetic excitations in Sr2CuTe$_{0.5}$W$_{0.5}$O as emerging from the bond-disordered exchange couplings. Our results provide crucial understanding of the role of non-magnetic cations in exchange interactions paving the way to further exploration of QSL phases in bond-disordered materials.
Perpendicular magnetic anisotropy of the new ferromagnetic semiconductor (Ba,K)(Zn,Mn)$_{2}$As$_{2}$ is studied by angle-dependent x-ray magnetic circular dichroism measurements. The large magnetic anisotropy with the anisotropy field of 0.85 T is deduced by fitting the Stoner-Wohlfarth model to the magnetic-field-angle dependence of the projected magnetic moment. Transverse XMCD spectra highlights the anisotropic distribution of Mn 3$d$ electrons, where the $d_{xz}$ and $d_{yz}$ orbitals are less populated than the $d_{xy}$ state because of the $D_{2d}$ splitting arising from the elongated MnAs$_{4}$ tetrahedra. It is suggested that the magnetic anisotropy originates from the degeneracy lifting of $p$-$d_{xz}$, $d_{yz}$ hybridized states at the Fermi level and resulting energy gain due to spin-orbit coupling when spins are aligned along the $z$ direction.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا