Do you want to publish a course? Click here

Drell-Yan $q_T$ Resummation of Fiducial Power Corrections at N$^3$LL

229   0   0.0 ( 0 )
 Added by Frank Tackmann
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We consider Drell-Yan production $ppto V^* X to L X$ at small $q_T ll Q$. Experimental measurements require fiducial cuts on the leptonic state $L$, which introduce enhanced, linear power corrections in $q_T/Q$. We show that they can be unambiguously predicted from factorization, and resummed to the same order as the leading-power contribution. We thus obtain predictions for the fiducial $q_T$ spectrum to N3LL and next-to-leading-power in $q_T/Q$. Matching to full NNLO ($alpha_s^2$), we find that the linear power corrections are indeed the dominant ones, and the remaining fixed-order corrections become almost negligible below $q_T lesssim 40$ GeV. We also discuss the implications for more complicated observables, and provide predictions for the fiducial $phi^*$ spectrum at N3LL+NNLO. We find excellent agreement with ATLAS and CMS measurements of $q_T$ and $phi^*$. We also consider the $p_T^ell$ spectrum. We show that it develops leptonic power corrections in $q_T/(Q - 2p_T^ell)$, which diverge near the Jacobian peak $p_T^ell sim Q/2$ and must be kept to all powers to obtain a meaningful result there. Doing so, we obtain for the first time an analytically resummed result for the $p_T^ell$ spectrum around the Jacobian peak at N3LL+NNLO. Our method is based on performing a complete tensor decomposition for hadronic and leptonic tensors. In practice this is equivalent to often-used recoil prescriptions, for which our results now provide rigorous, formal justification. Our tensor decomposition yields nine Lorentz-scalar hadronic structure functions, which directly map onto the commonly used angular coefficients, but also holds for arbitrary leptonic final states. In particular, for suitably defined Born-projected leptons it still yields a LO-like angular decomposition even when including QED final-state radiation. We also discuss the application to $q_T$ subtractions.



rate research

Read More

We present a framework for $q_T$ resummation at N$^3$LL+NNLO accuracy for arbitrary color-singlet processes based on a factorization theorem in SCET. Our implementation CuTe-MCFM is fully differential in the Born kinematics and matches to large-$q_T$ fixed-order predictions at relative order $alpha_s^2$. It provides an efficient way to estimate uncertainties from fixed-order truncation, resummation, and parton distribution functions. In addition to $W^pm$, $Z$ and $H$ production, also the diboson processes $gammagamma,Zgamma,ZH$ and $W^pm H$ are available, including decays. We discuss and exemplify the framework with several direct comparisons to experimental measurements as well as inclusive benchmark results. In particular, we present novel results for $gammagamma$ and $Zgamma$ at N$^3$LL+NNLO and discuss in detail the power corrections induced by photon isolation requirements.
We present the resummed predictions for inclusive cross-section for Drell-Yan (DY) production as well as onshell $Z,W^pm$ productions at next-to-next-to-next-to leading logarithmic (N$^{3}$LL) accuracy. Using the standard techniques, we derive the $N$-dependent coefficients in the Mellin-$N$ space as well as the $N$-independent constants and match the resummed result through the minimal prescription matching procedure with that of existing next-to next-to leading order (NNLO). In addition to the standard $ln N$ exponentiation, we study the numerical impacts of exponentiating $N$-independent part of the soft function and the complete $bar{g}_0$ that appears in the resummed predictions in $N$ space. All the analytical pieces needed in these different approaches are extracted from the soft-virtual part of the inclusive cross section known to next-to-next-to-next-to leading order (N$^3$LO). We perform a detailed analysis on the scale and parton distribution function (PDF) variations and present predictions for the 13 TeV LHC for the neutral Drell-Yan process as well as onshell charged and neutral vector boson productions.
70 - Tobias Neumann 2021
We present a $q_T$-resummed calculation of diphoton production at order N$^3$LL$^prime$+NNLO. To reach the primed level of accuracy we have implemented the recently published three-loop $mathcal{O}(alpha_s^3)$ virtual corrections in the $qbar{q}$ channel and the three-loop transverse momentum dependent beam functions and combined them with the existing infrastructure of CuTe-MCFM, a code performing resummation at order N$^3$LL. While the primed predictions are parametrically not more accurate, one typically observes that they are the dominant effect of the next order. We include in both the $qbar{q}$ and loop-induced $gg$ channel the hard contributions consistently together at order $alpha_s^3$ and find that the resummed $qbar{q}$ channel without matching stabilizes indeed. Due to large matching corrections and large contributions and uncertainties from the $gg$ channel, the overall improvements are small though. We furthermore study the effect of hybrid-cone photon isolation and hard-scale choice on our fully matched results to describe the ATLAS 8 TeV data and find that the hybrid-cone isolation destroys agreement at small $q_T$.
We present an extraction of unpolarised Transverse-Momentum-Dependent Parton Distribution Functions based on Drell-Yan production data from different experiments, including those at the LHC, and spanning a wide kinematic range. We deal with experimental uncertainties by properly taking into account correlations. We include resummation of logarithms of the transverse momentum of the vector boson up to N$^3$LL order, and we include non-perturbative contributions. These ingredients allow us to obtain a remarkable agreement with the data.
We perform the global analysis of polarized Semi-Inclusive Deep Inelastic Scattering (SIDIS), pion-induced polarized Drell-Yan (DY), and $W^pm/Z$ boson production data and extract the Sivers function for $u$, $d$, $s$ and for sea-quarks. We use the framework of transverse momentum dependent factorization at N$^3$LO accuracy. The Qiu-Sterman function is determined in a model-independent way from the extracted Sivers function. We also evaluate the significance of the predicted sign change of Sivers function in DY with respect to SIDIS.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا