No Arabic abstract
We present the detection and analysis of the phase curve of KELT-1b at optical wavelengths, analyzing data taken by the Transiting Exoplanet Survey Satellite (TESS). With a mass of ~27 M_J, KELT-1b is a low-mass brown dwarf. Due to the high mass and close proximity of its companion, the host star has a TESS light curve which shows clear ellipsoidal variations. We model the data with a six-component model: secondary eclipse, phase curve accounting for reflected light and thermal emission, Doppler beaming, ellipsoidal variations, stellar activity and the primary transit. We determine the secondary eclipse depth in the TESS bandpass to be 304 +/- 75 parts-per-million (ppm), the most accurate eclipse depth determined so far for KELT-1b. We measure the amplitude of the phase curve to be 128 +/- 27 ppm, with a corresponding eastward offset between the region of maximum brightness and the substellar point of 19.2 +/- 9.6 degrees, in good agreement with Spitzer measurements. We determine day and night brightness temperatures of 3201 +/- 147 K and 1484 +/- 110 K, respectively, slightly higher than those from Spitzer 3.6 and 4.5 micrometer data. A one-dimensional self-consistent atmospheric model can explain the TESS and Spitzer day side brightness temperatures with thermal emission alone and no reflected light. The night side data can be explained by a model with an internal temperature of ~1100 K, which may be related to the inflated radius. The difference between the TESS and Spitzer brightness temperatures can be explained by stronger molecular opacity in the Spitzer bands. On the night side, this opacity is due primarily to CH4 and CO while on the day side it is due to H2-H2 and H2-He collision-induced absorption.
We measured the optical phase curve of the transiting brown dwarf KELT-1b (TOI 1476, Siverd et al. 2012) using data from the TESS spacecraft. We found that KELT-1b shows significant phase variation in the TESS bandpass, with a relatively large phase amplitude of $234^{+43}_{-44}$ ppm and a secondary eclipse depth of $371^{+47}_{-49}$ ppm. We also measured a marginal eastward offset in the dayside hotspot of $18.3^circpm7.4^circ$ relative to the substellar point. We detected a strong phase curve signal attributed to ellipsoidal distortion of the host star, with an amplitude of $399pm19$ ppm. Our results are roughly consistent with the Spitzer phase curves of KELT-1b (Beatty et al. 2019), but the TESS eclipse depth is deeper than expected. Our cloud-free 1D models of KELT-1bs dayside emission are unable to fit the full combined eclipse spectrum. Instead, the large TESS eclipse depth suggests that KELT-1b may have a significant dayside geometric albedo of $mathrm{A}_mathrm{g}sim0.5$ in the TESS bandpass, which would agree with the tentative trend between equilibrium temperature and geometric albedo recently suggested by Wong et al. 2020. We posit that if KELT-1b has a high dayside albedo, it is likely due to silicate clouds (Gao et al. 2020) that form on KELT-1bs nightside (Beatty et al. 2019, Keating et al. 2019) and are subsequently transported onto the western side of KELT-1bs dayside hemisphere before breaking up.
We present the detection and characterization of the full-orbit phase curve and secondary eclipse of the ultra-hot Jupiter WASP-33b at optical wavelengths, along with the pulsation spectrum of the host star. We analyzed data collected by the Transiting Exoplanet Survey Satellite (TESS) in sector 18. WASP-33b belongs to a very short list of highly irradiated exoplanets that were discovered from the ground and were later visited by TESS. The host star of WASP-33b is of delta Scuti-type and shows nonradial pulsations in the millimagnitude regime, with periods comparable to the period of the primary transit. These completely deform the photometric light curve, which hinders our interpretations. By carrying out a detailed determination of the pulsation spectrum of the host star, we find 29 pulsation frequencies with a signal-to-noise ratio higher than 4. After cleaning the light curve from the stellar pulsations, we confidently report a secondary eclipse depth of 305.8 +/- 35.5 parts-per-million (ppm), along with an amplitude of the phase curve of 100.4 +/- 13.1 ppm and a corresponding westward offset between the region of maximum brightness and the substellar point of 28.7 +/- 7.1 degrees, making WASP-33b one of the few planets with such an offset found so far. Our derived Bond albedo, A_B = 0.369 +/- 0.050, and heat recirculation efficiency, epsilon = 0.189 +/- 0.014, confirm again that he behavior of WASP-33b is similar to that of other hot Jupiters, despite the high irradiation received from its host star. By connecting the amplitude of the phase curve to the primary transit and depths of the secondary eclipse, we determine that the day- and nightside brightness temperatures of WASP-33b are 3014 +/- 60 K and 1605 +/- 45 K, respectively. From the detection of photometric variations due to gravitational interactions, we estimate a planet mass of M_P = 2.81 +/- 0.53 M$_J.
We report the discovery of a bright, brown dwarf companion to the star HIP 64892, imaged with VLT/SPHERE during the SHINE exoplanet survey. The host is a B9.5V member of the Lower-Centaurus-Crux subgroup of the Scorpius Centaurus OB association. The measured angular separation of the companion ($1.2705pm0.0023$) corresponds to a projected distance of $159pm12$ AU. We observed the target with the dual-band imaging and long-slit spectroscopy modes of the IRDIS imager to obtain its SED and astrometry. In addition, we reprocessed archival NACO L-band data, from which we also recover the companion. Its SED is consistent with a young (<30 Myr), low surface gravity object with a spectral type of M9$_{gamma}pm1$. From comparison with the BT-Settl atmospheric models we estimate an effective temperature of $T_{textrm{eff}}=2600 pm 100$ K, and comparison of the companion photometry to the COND evolutionary models yields a mass of $sim29-37$ M$_{text{J}}$ at the estimated age of $16^{+15}_{-7}$ Myr for the system. HIP 64892 is a rare example of an extreme-mass ratio system ($qsim0.01$) and will be useful for testing models relating to the formation and evolution of such low-mass objects.
We present secondary eclipse observations of the highly irradiated transiting brown dwarf KELT-1b. These observations represent the first constraints on the atmospheric dynamics of a highly irradiated brown dwarf, and the atmospheres of irradiated giant planets at high surface gravity. Using the Spitzer Space Telescope, we measure secondary eclipse depths of 0.195+/-0.010% at 3.6um and 0.200+/-0.012% at 4.5um. We also find tentative evidence for the secondary eclipse in the z band with a depth of 0.049+/-0.023%. These measured eclipse depths are most consistent with an atmosphere model in which there is a strong substellar hotspot, implying that heat redistribution in the atmosphere of KELT-1b is low. While models with a more mild hotspot or even with dayside heat redistribution are only marginally disfavored, models with complete heat redistribution are strongly ruled out. The eclipse depths also prefer an atmosphere with no TiO inversion layer, although a model with TiO inversion is permitted in the dayside heat redistribution case, and we consider the possibility of a day-night TiO cold trap in this object. For the first time, we compare the IRAC colors of brown dwarfs and hot Jupiters as a function of effective temperature. Importantly, our measurements reveal that KELT-1b has a [3.6]-[4.5] color of 0.07+/-0.11, identical to that of isolated brown dwarfs of similarly high temperature. In contrast, hot Jupiters generally show redder [3.6]-[4.5] colors of ~0.4, with a very large range from ~0 to ~1. Evidently, despite being more similar to hot Jupiters than to isolated brown dwarfs in terms of external forcing of the atmosphere by stellar insolation, KELT-1b has an atmosphere most like that of other brown dwarfs. This suggests that surface gravity is very important in controlling the atmospheric systems of substellar mass bodies.
We observed two full orbital phase curves of the transiting brown dwarf KELT-1b, at 3.6um and 4.5um, using the Spitzer Space Telescope. Combined with previous eclipse data from Beatty et al. (2014), we strongly detect KELT-1bs phase variation as a single sinusoid in both bands, with amplitudes of $964pm36$ ppm at 3.6um and $979pm54$ ppm at 4.5um, and confirm the secondary eclipse depths measured by Beatty et al. (2014). We also measure noticeable Eastward hotspot offsets of $28.4pm3.5$ degrees at 3.6um and $18.6pm5.2$ degrees at 4.5um. Both the day-night temperature contrasts and the hotspot offsets we measure are in line with the trends seen in hot Jupiters (e.g., Crossfield 2015), though we disagree with the recent suggestion of an offset trend by Zhang et al. (2018). Using an ensemble analysis of Spitzer phase curves, we argue that nightside clouds are playing a noticeable role in modulating the thermal emission from these objects, based on: 1) the lack of a clear trend in phase offsets with equilibrium temperature, 2) the sharp day-night transitions required to have non-negative intensity maps, which also resolves the inversion issues raised by Keating & Cowan (2017), 3) the fact that all the nightsides of these objects appear to be at roughly the same temperature of 1000K, while the dayside temperatures increase linearly with equilibrium temperature, and 4) the trajectories of these objects on a Spitzer color-magnitude diagram, which suggest colors only explainable via nightside clouds.