No Arabic abstract
We report the discovery of a bright, brown dwarf companion to the star HIP 64892, imaged with VLT/SPHERE during the SHINE exoplanet survey. The host is a B9.5V member of the Lower-Centaurus-Crux subgroup of the Scorpius Centaurus OB association. The measured angular separation of the companion ($1.2705pm0.0023$) corresponds to a projected distance of $159pm12$ AU. We observed the target with the dual-band imaging and long-slit spectroscopy modes of the IRDIS imager to obtain its SED and astrometry. In addition, we reprocessed archival NACO L-band data, from which we also recover the companion. Its SED is consistent with a young (<30 Myr), low surface gravity object with a spectral type of M9$_{gamma}pm1$. From comparison with the BT-Settl atmospheric models we estimate an effective temperature of $T_{textrm{eff}}=2600 pm 100$ K, and comparison of the companion photometry to the COND evolutionary models yields a mass of $sim29-37$ M$_{text{J}}$ at the estimated age of $16^{+15}_{-7}$ Myr for the system. HIP 64892 is a rare example of an extreme-mass ratio system ($qsim0.01$) and will be useful for testing models relating to the formation and evolution of such low-mass objects.
We report the discovery of an L dwarf companion to the A3V star beta{} Circini. VVV J151721.49-585131.5, or beta{} Cir B, was identified in a proper motion and parallax catalogue of the Vista Variables in the V{i}a L{a}ctea survey as having near infrared luminosity and colour indicative of an early L dwarf, and a proper motion and parallax consistent with that of beta{} Cir. The projected separation of $sim$3.6 corresponds to $6656$ au, which is unusually wide. The most recent published estimate of the age of the primary combined with our own estimate based on newer isochrones yields an age of $370-500$ Myr. The system therefore serves as a useful benchmark at an age greater than that of the Pleiades brown dwarfs and most other young L dwarf benchmarks. We have obtained a medium resolution echelle spectrum of the companion which indicates a spectral type of L1.0$pm$0.5 and lacks the typical signatures of low surface gravity seen in younger brown dwarfs. This suggests that signs of low surface gravity disappear from the spectra of early L dwarfs by an age of $sim370-500$ Myr, as expected from theoretical isochrones. The mass of beta{} Cir B is estimated from the BHAC15 isochrones as $0.056pm0.007$ M$_{odot}$.
Magnetospheric processes seen in gas-giants such as aurorae and circularly-polarized cyclotron maser radio emission have been detected from some brown dwarfs. However, previous radio observations targeted known brown dwarfs discovered via their infrared emission. Here we report the discovery of BDR J1750+3809, a circularly polarized radio source detected around 144 MHz with the LOFAR telescope. Follow-up near-infrared photometry and spectroscopy show that BDR J1750+3809 is a cold methane dwarf of spectral type T$6.5pm 1$ at a distance of $65^{+9}_{-8},{rm pc}$. The quasi-quiescent radio spectral luminosity of BDR J1750+3809 is $approx 5times 10^{15},{rm erg},{rm s}^{-1},{rm Hz}^{-1}$ which is over two orders of magnitude larger than that of the known population of comparable spectral type. This could be due to a preferential geometric alignment or an electrodynamic interaction with a close companion. In addition, as the emission is expected to occur close to the electron gyro-frequency, the magnetic field strength at the emitter site in BDR J1750+3809 is $Bgtrsim 25,{rm G}$, which is comparable to planetary-scale magnetic fields. Our discovery suggests that low-frequency radio surveys can be employed to discover sub-stellar objects that are too cold to be detected in infrared surveys.
We present the discovery of a co-moving planetary-mass companion ~42 (~2000 AU) from a young M3 star, GU Psc, likely member of the young AB Doradus Moving Group (ABDMG). The companion was first identified via its distinctively red i - z color (> 3.5) through a survey made with Gemini-S/GMOS. Follow-up Canada-France-Hawaii Telescope/WIRCam near-infrared (NIR) imaging, Gemini-N/GNIRS NIR spectroscopy and Wide-field Infrared Survey Explorer photometry indicate a spectral type of T3.5+-1 and reveal signs of low gravity which we attribute to youth. Keck/Adaptive Optics NIR observations did not resolve the companion as a binary. A comparison with atmosphere models indicates Teff = 1000-1100 K and logg = 4.5-5.0. Based on evolution models, this temperature corresponds to a mass of 9-13 MJup for the age of ABDMG (70-130 Myr). The relatively well-constrained age of this companion and its very large angular separation to its host star will allow its thorough characterization and will make it a valuable comparison for planetary-mass companions that will be uncovered by forthcoming planet-finder instruments such as Gemini Planet Imager and SPHERE.
Wide low-mass substellar companions are known to be very rare among low-mass stars, but appear to become increasingly common with increasing stellar mass. However, B-type stars, which are the most massive stars within ~150 pc of the Sun, have not yet been examined to the same extent as AFGKM-type stars in that regard. In order to address this issue, we launched the ongoing B-star Exoplanet Abundance Study (BEAST) to examine the frequency and properties of planets, brown dwarfs, and disks around B-type stars in the Scorpius-Centaurus (Sco-Cen) association; we also analyzed archival data of B-type stars in Sco-Cen. During this process, we identified a candidate substellar companion to the B9-type spectroscopic binary HIP 79098 AB, which we refer to as HIP 79098 (AB)b. The candidate had been previously reported in the literature, but was classified as a background contaminant on the basis of its peculiar colors. Here we demonstrate that the colors of HIP 79098 (AB)b are consistent with several recently discovered young and low-mass brown dwarfs, including other companions to stars in Sco-Cen. Furthermore, we show unambiguous common proper motion over a 15-year baseline, robustly identifying HIP 79098 (AB)b as a bona fide substellar circumbinary companion at a 345+/-6 AU projected separation to the B9-type stellar pair. With a model-dependent mass of 16-25 Mjup yielding a mass ratio of <1%, HIP 79098 (AB)b joins a growing number of substellar companions with planet-like mass ratios around massive stars. Our observations underline the importance of common proper motion analysis in the identification of physical companionship, and imply that additional companions could potentially remain hidden in the archives of purely photometric surveys.
We present an analysis of the anomalous microlensing event, MOA-2010-BLG-073, announced by the Microlensing Observations in Astrophysics survey on 2010-03-18. This event was remarkable because the source was previously known to be photometrically variable. Analyzing the pre-event source lightcurve, we demonstrate that it is an irregular variable over time scales >200d. Its dereddened color, $(V-I)_{S,0}$, is 1.221$pm$0.051mag and from our lens model we derive a source radius of 14.7$pm$1.3 $R_{odot}$, suggesting that it is a red giant star. We initially explored a number of purely microlensing models for the event but found a residual gradient in the data taken prior to and after the event. This is likely to be due to the variability of the source rather than part of the lensing event, so we incorporated a slope parameter in our model in order to derive the true parameters of the lensing system. We find that the lensing system has a mass ratio of q=0.0654$pm$0.0006. The Einstein crossing time of the event, $T_{rm{E}}=44.3$pm$0.1d, was sufficiently long that the lightcurve exhibited parallax effects. In addition, the source trajectory relative to the large caustic structure allowed the orbital motion of the lens system to be detected. Combining the parallax with the Einstein radius, we were able to derive the distance to the lens, $D_L$=2.8$pm$0.4kpc, and the masses of the lensing objects. The primary of the lens is an M-dwarf with $M_{L,p}$=0.16$pm0.03M_{odot}$ while the companion has $M_{L,s}$=11.0$pm2.0M_{rm{J}}$ putting it in the boundary zone between planets and brown dwarfs.