Do you want to publish a course? Click here

Spin-Induced Linear Polarization of Excitonic Emission in Antiferromagnetic van der Waals Crystals

80   0   0.0 ( 0 )
 Added by Xingzhi Wang
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Antiferromagnets display enormous potential in spintronics owing to its intrinsic nature, including terahertz resonance, multilevel states, and absence of stray fields. Combining with the layered nature, van der Waals (vdW) antiferromagnets hold the promise in providing new insights and new designs in two-dimensional (2D) spintronics. The zero net magnetic moments of vdW antiferromagnets strengthens the spin stability, however, impedes the correlation between spin and other excitation elements, like excitons. Such coupling is urgently anticipated for fundamental magneto-optical studies and potential opto-spintronic devices. Here, we report an ultra-sharp excitonic emission with excellent monochromaticity in antiferromagnetic nickel phosphorus trisulfides (NiPS3) from bulk to atomically thin flakes. We prove that the linear polarization of the excitonic luminescence is perpendicular to the ordered spin orientation in NiPS3. By applying an in-plane magnetic field to alter the spin orientation, we further manipulate the excitonic emission polarization. Such strong correlation between exciton and spins provides new insights for the study of magneto-optics in 2D materials, and hence opens a path for developing opto-spintronic devices and antiferromagnet-based quantum information technologies.



rate research

Read More

Inversion symmetric materials are forbidden to show an overall spin texture in their band structure in the presence of time-reversal symmetry. However, in van der Waals materials which lack inversion symmetry within a single layer, it has been proposed that a layer-dependent spin texture can arise leading to a coupled spin-layer degree of freedom. Here we use time-resolved Kerr rotation in inversion symmetric WSe$_{2}$ and MoSe$_{2}$ bulk crystals to study this spin-layer polarization and unveil its dynamics. Our measurements show that the spin-layer relaxation time in WSe$_2$ is limited by phonon-scattering at high temperatures and that the inter-layer hopping can be tunned by a small in-plane magnetic field at low temperatures, enhancing the relaxation rates. We find a significantly lower lifetime for MoSe$_{2}$ which agrees with theoretical expectations of a spin-layer polarization stabilized by the larger spin-orbit coupling in WSe$_2$.
We predict that antiferromagnetic bilayers formed from van der Waals (vdW) materials, like bilayer CrI$_3$, have a strong magnetoelectric response that can be detected by measuring the gate voltage dependence of Faraday or Kerr rotation signals, total magnetization, or anomalous Hall conductivity. Strong effects are possible in single-gate geometries, and in dual-gate geometries that allow internal electric fields and total carrier densities to be varied independently. We comment on the reliability of density-functional-theory estimates of interlayer magnetic interactions in van der Waals bilayers, and on the sensitivity of magnetic interactions to pressure that alters the spatial separation between layers.
The band structure of transition metal dichalcogenides (TMDCs) with valence band edges at different locations in the momentum space could be harnessed to build devices that operate relying on the valley degree of freedom. To realize such valleytronic devices, it is necessary to control and manipulate the charge density in these valleys, resulting in valley polarization. While this has been demonstrated using optical excitation, generation of valley polarization in electronic devices without optical excitation remains difficult. Here, we demonstrate spin injection from a ferromagnetic electrode into a heterojunction based on monolayers of WSe2 and MoS2 and lateral transport of spin-polarized holes within the WSe2 layer. The resulting valley polarization leads to circularly polarized light emission which can be tuned using an external magnetic field. This demonstration of spin injection and magnetoelectronic control over valley polarization provides a new opportunity for realizing combined spin and valleytronic devices based on spin-valley locking in semiconducting TMDCs.
Excitons in monolayer semiconductors have large optical transition dipole for strong coupling with light field. Interlayer excitons in heterobilayers, with layer separation of electron and hole components, feature large electric dipole that enables strong coupling with electric field and exciton-exciton interaction, at the cost that the optical dipole is substantially quenched (by several orders of magnitude). In this letter, we demonstrate the ability to create a new class of excitons in transition metal dichalcogenide (TMD) hetero- and homo-bilayers that combines the advantages of monolayer- and interlayer-excitons, i.e. featuring both large optical dipole and large electric dipole. These excitons consist of an electron that is well confined in an individual layer, and a hole that is well extended in both layers, realized here through the carrier-species specific layer-hybridization controlled through the interplay of rotational, translational, band offset, and valley-spin degrees of freedom. We observe different species of such layer-hybridized valley excitons in different heterobilayer and homobilayer systems, which can be utilized for realizing strongly interacting excitonic/polaritonic gases, as well as optical quantum coherent controls of bidirectional interlayer carrier transfer either with upper conversion or down conversion in energy.
The van der Waals heterostructures are a fertile frontier for discovering emergent phenomena in condensed matter systems. They are constructed by stacking elements of a large library of two-dimensional materials, which couple together through van der Waals interactions. However, the number of possible combinations within this library is staggering, and fully exploring their potential is a daunting task. Here we introduce van der Waals metamaterials to rapidly prototype and screen their quantum counterparts. These layered metamaterials are designed to reshape the flow of ultrasound to mimic electron motion. In particular, we show how to construct analogues of all stacking configurations of bilayer and trilayer graphene through the use of interlayer membranes that emulate van der Waals interactions. By changing the membranes density and thickness, we reach coupling regimes far beyond that of conventional graphene. We anticipate that van der Waals metamaterials will explore, extend, and inform future electronic devices. Equally, they allow the transfer of useful electronic behavior to acoustic systems, such as flat bands in magic-angle twisted bilayer graphene, which may aid the development of super-resolution ultrasound imagers.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا