No Arabic abstract
Excitons in monolayer semiconductors have large optical transition dipole for strong coupling with light field. Interlayer excitons in heterobilayers, with layer separation of electron and hole components, feature large electric dipole that enables strong coupling with electric field and exciton-exciton interaction, at the cost that the optical dipole is substantially quenched (by several orders of magnitude). In this letter, we demonstrate the ability to create a new class of excitons in transition metal dichalcogenide (TMD) hetero- and homo-bilayers that combines the advantages of monolayer- and interlayer-excitons, i.e. featuring both large optical dipole and large electric dipole. These excitons consist of an electron that is well confined in an individual layer, and a hole that is well extended in both layers, realized here through the carrier-species specific layer-hybridization controlled through the interplay of rotational, translational, band offset, and valley-spin degrees of freedom. We observe different species of such layer-hybridized valley excitons in different heterobilayer and homobilayer systems, which can be utilized for realizing strongly interacting excitonic/polaritonic gases, as well as optical quantum coherent controls of bidirectional interlayer carrier transfer either with upper conversion or down conversion in energy.
The van der Waals heterostructures are a fertile frontier for discovering emergent phenomena in condensed matter systems. They are constructed by stacking elements of a large library of two-dimensional materials, which couple together through van der Waals interactions. However, the number of possible combinations within this library is staggering, and fully exploring their potential is a daunting task. Here we introduce van der Waals metamaterials to rapidly prototype and screen their quantum counterparts. These layered metamaterials are designed to reshape the flow of ultrasound to mimic electron motion. In particular, we show how to construct analogues of all stacking configurations of bilayer and trilayer graphene through the use of interlayer membranes that emulate van der Waals interactions. By changing the membranes density and thickness, we reach coupling regimes far beyond that of conventional graphene. We anticipate that van der Waals metamaterials will explore, extend, and inform future electronic devices. Equally, they allow the transfer of useful electronic behavior to acoustic systems, such as flat bands in magic-angle twisted bilayer graphene, which may aid the development of super-resolution ultrasound imagers.
Spin orbit coupling (SOC) is the key to realizing time-reversal invariant topological phases of matter. Famously, SOC was predicted by Kane and Mele to stabilize a quantum spin Hall insulator; however, the weak intrinsic SOC in monolayer graphene has precluded experimental observation. Here, we exploit a layer-selective proximity effect---achieved via van der Waals contact to a semiconducting transition metal dichalcogenide--to engineer Kane-Mele SOC in ultra-clean textit{bilayer} graphene. Using high-resolution capacitance measurements to probe the bulk electronic compressibility, we find that SOC leads to the formation of a distinct incompressible, gapped phase at charge neutrality. The experimental data agrees quantitatively with a simple theoretical model in which the new phase results from SOC-driven band inversion. In contrast to Kane-Mele SOC in monolayer graphene, the inverted phase is not expected to be a time reversal invariant topological insulator, despite being separated from conventional band insulators by electric field tuned phase transitions where crystal symmetry mandates that the bulk gap must close. Electrical transport measurements, conspicuously, reveal that the inverted phase has a conductivity $sim e^2/h$, which is suppressed by exceptionally small in-plane magnetic fields. The high conductivity and anomalous magnetoresistance are consistent with theoretical models that predict helical edge states within the inversted phase, that are protected from backscattering by an emergent spin symmetry that remains robust even for large Rashba SOC. Our results pave the way for proximity engineering of strong topological insulators as well as correlated quantum phases in the strong spin-orbit regime in graphene heterostructures.
We predict that antiferromagnetic bilayers formed from van der Waals (vdW) materials, like bilayer CrI$_3$, have a strong magnetoelectric response that can be detected by measuring the gate voltage dependence of Faraday or Kerr rotation signals, total magnetization, or anomalous Hall conductivity. Strong effects are possible in single-gate geometries, and in dual-gate geometries that allow internal electric fields and total carrier densities to be varied independently. We comment on the reliability of density-functional-theory estimates of interlayer magnetic interactions in van der Waals bilayers, and on the sensitivity of magnetic interactions to pressure that alters the spatial separation between layers.
The development of van der Waals (vdW) crystals and their heterostructures has created a fascinating platform for exploring optoelectronic properties in the two-dimensional (2D) limit. With the recent discovery of 2D magnets, the control of the spin degree of freedom can be integrated to realize 2D spin-optoelectronics with spontaneous time-reversal symmetry breaking. Here, we report spin photovoltaic effects in vdW heterostructures of atomically thin magnet chromium triiodide (CrI3) sandwiched by graphene contacts. In the absence of a magnetic field, the photocurrent displays a distinct dependence on light helicity, which can be tuned by varying the magnetic states and photon energy. Circular polarization-resolved absorption measurements reveal that these observations originate from magnetic-order-coupled and thus helicity-dependent charge-transfer exciton states. The photocurrent displays multiple plateaus as the magnetic field is swept, which are associated with different spin configurations enabled by the layered antiferromagnetism and spin-flip transitions in CrI3. Remarkably, giant photo-magnetocurrent is observed, which tends to infinity for a small applied bias. Our results pave the way to explore emergent photo-spintronics by engineering magnetic vdW heterostructures.
The integration of magnetic material with semiconductors has been fertile ground for fundamental science as well as of great practical interest toward the seamless integration of information processing and storage. Here we create van der Waals heterostructures formed by an ultrathin ferromagnetic semiconductor CrI3 and a monolayer of WSe2. We observe unprecedented control of the spin and valley pseudospin in WSe2, where we detect a large magnetic exchange field of nearly 13 T and rapid switching of the WSe2 valley splitting and polarization via flipping of the CrI3 magnetization. The WSe2 photoluminescence intensity strongly depends on the relative alignment between photo-excited spins in WSe2 and the CrI3 magnetization, due to ultrafast spin-dependent charge hopping across the heterostructure interface. The photoluminescence detection of valley pseudospin provides a simple and sensitive method to probe the intriguing domain dynamics in the ultrathin magnet, as well as the rich spin interactions within the heterostructure.