Do you want to publish a course? Click here

Quasi-Dense Similarity Learning for Multiple Object Tracking

208   0   0.0 ( 0 )
 Added by Jiangmiao Pang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Similarity learning has been recognized as a crucial step for object tracking. However, existing multiple object tracking methods only use sparse ground truth matching as the training objective, while ignoring the majority of the informative regions on the images. In this paper, we present Quasi-Dense Similarity Learning, which densely samples hundreds of region proposals on a pair of images for contrastive learning. We can directly combine this similarity learning with existing detection methods to build Quasi-Dense Tracking (QDTrack) without turning to displacement regression or motion priors. We also find that the resulting distinctive feature space admits a simple nearest neighbor search at the inference time. Despite its simplicity, QDTrack outperforms all existing methods on MOT, BDD100K, Waymo, and TAO tracking benchmarks. It achieves 68.7 MOTA at 20.3 FPS on MOT17 without using external training data. Compared to methods with similar detectors, it boosts almost 10 points of MOTA and significantly decreases the number of ID switches on BDD100K and Waymo datasets. Our code and trained models are available at http://vis.xyz/pub/qdtrack.



rate research

Read More

98 - Qiang Wang , Yun Zheng , Pan Pan 2021
Recent works have shown that convolutional networks have substantially improved the performance of multiple object tracking by simultaneously learning detection and appearance features. However, due to the local perception of the convolutional network structure itself, the long-range dependencies in both the spatial and temporal cannot be obtained efficiently. To incorporate the spatial layout, we propose to exploit the local correlation module to model the topological relationship between targets and their surrounding environment, which can enhance the discriminative power of our model in crowded scenes. Specifically, we establish dense correspondences of each spatial location and its context, and explicitly constrain the correlation volumes through self-supervised learning. To exploit the temporal context, existing approaches generally utilize two or more adjacent frames to construct an enhanced feature representation, but the dynamic motion scene is inherently difficult to depict via CNNs. Instead, our paper proposes a learnable correlation operator to establish frame-to-frame matches over convolutional feature maps in the different layers to align and propagate temporal context. With extensive experimental results on the MOT datasets, our approach demonstrates the effectiveness of correlation learning with the superior performance and obtains state-of-the-art MOTA of 76.5% and IDF1 of 73.6% on MOT17.
The recent trend in multiple object tracking (MOT) is heading towards leveraging deep learning to boost the tracking performance. However, it is not trivial to solve the data-association problem in an end-to-end fashion. In this paper, we propose a novel proposal-based learnable framework, which models MOT as a proposal generation, proposal scoring and trajectory inference paradigm on an affinity graph. This framework is similar to the two-stage object detector Faster RCNN, and can solve the MOT problem in a data-driven way. For proposal generation, we propose an iterative graph clustering method to reduce the computational cost while maintaining the quality of the generated proposals. For proposal scoring, we deploy a trainable graph-convolutional-network (GCN) to learn the structural patterns of the generated proposals and rank them according to the estimated quality scores. For trajectory inference, a simple deoverlapping strategy is adopted to generate tracking output while complying with the constraints that no detection can be assigned to more than one track. We experimentally demonstrate that the proposed method achieves a clear performance improvement in both MOTA and IDF1 with respect to previous state-of-the-art on two public benchmarks. Our code is available at https://github.com/daip13/LPC_MOT.git.
138 - Qiao Liu , Xin Li , Zhenyu He 2019
Existing deep Thermal InfraRed (TIR) trackers only use semantic features to describe the TIR object, which lack the sufficient discriminative capacity for handling distractors. This becomes worse when the feature extraction network is only trained on RGB images.To address this issue, we propose a multi-level similarity model under a Siamese framework for robust TIR object tracking. Specifically, we compute different pattern similarities on two convolutional layers using the proposed multi-level similarity network. One of them focuses on the global semantic similarity and the other computes the local structural similarity of the TIR object. These two similarities complement each other and hence enhance the discriminative capacity of the network for handling distractors. In addition, we design a simple while effective relative entropy based ensemble subnetwork to integrate the semantic and structural similarities. This subnetwork can adaptive learn the weights of the semantic and structural similarities at the training stage. To further enhance the discriminative capacity of the tracker, we construct the first large scale TIR video sequence dataset for training the proposed model. The proposed TIR dataset not only benefits the training for TIR tracking but also can be applied to numerous TIR vision tasks. Extensive experimental results on the VOT-TIR2015 and VOT-TIR2017 benchmarks demonstrate that the proposed algorithm performs favorably against the state-of-the-art methods.
Multiple Object Tracking (MOT) is an important task in computer vision. MOT is still challenging due to the occlusion problem, especially in dense scenes. Following the tracking-by-detection framework, we propose the Box-Plane Matching (BPM) method to improve the MOT performacne in dense scenes. First, we design the Layer-wise Aggregation Discriminative Model (LADM) to filter the noisy detections. Then, to associate remaining detections correctly, we introduce the Global Attention Feature Model (GAFM) to extract appearance feature and use it to calculate the appearance similarity between history tracklets and current detections. Finally, we propose the Box-Plane Matching strategy to achieve data association according to the motion similarity and appearance similarity between tracklets and detections. With the effectiveness of the three modules, our team achieves the 1st place on the Track-1 leaderboard in the ACM MM Grand Challenge HiEve 2020.
Conventional methods of 3D object generative modeling learn volumetric predictions using deep networks with 3D convolutional operations, which are direct analogies to classical 2D ones. However, these methods are computationally wasteful in attempt to predict 3D shapes, where information is rich only on the surfaces. In this paper, we propose a novel 3D generative modeling framework to efficiently generate object shapes in the form of dense point clouds. We use 2D convolutional operations to predict the 3D structure from multiple viewpoints and jointly apply geometric reasoning with 2D projection optimization. We introduce the pseudo-renderer, a differentiable module to approximate the true rendering operation, to synthesize novel depth maps for optimization. Experimental results for single-image 3D object reconstruction tasks show that we outperforms state-of-the-art methods in terms of shape similarity and prediction density.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا