No Arabic abstract
Intercalation of alkali atoms within the lamellar transition metal dichalcogenides is a possible route toward a new generation of batteries. It is also a way to induce structural phase transitions authorizing the realization of optical and electrical switches in this class of materials. The process of intercalation has been mostly studied in three-dimensional dichalcogenide films. Here, we address the case of a single-layer of molybdenum disulfide (MoS$_2$), deposited on a gold substrate, and intercalated with cesium (Cs) in ultra-clean conditions (ultrahigh vacuum). We show that intercalation decouples MoS$_2$ from its substrate. We reveal electron transfer from Cs to MoS$_2$, relative changes in the energy of the valence band maxima, and electronic disorder induced by structural disorder in the intercalated Cs layer. Besides, we find an abnormal lattice expansion of MoS$_2$, which we relate to immediate vicinity of Cs. Intercalation is thermally activated, and so is the reverse process of de-intercalation. Our work opens the route to a microscopic understanding of a process of relevance in several possible future technologies, and shows a way to manipulate the properties of two-dimensional dichalcogenides by under-cover functionalization.
Molybdenum disulfide has recently emerged as a promising two-dimensional semiconducting material for nano-electronic, opto-electronic and spintronic applications. However, demonstrating spin-transport through a semiconducting MoS2 channel is challenging. Here we demonstrate the electrical spin injection and detection in a multilayer MoS2 semiconducting channel. A magnetoresistance (MR) around 1% has been observed at low temperature through a 450nm long, 6 monolayer thick channel with a Co/MgO spin injector and detector. From a systematic study of the bias voltage, temperature and back-gate voltage dependence of MR, it is found that the hopping via localized states in the contact depletion region plays a key role for the observation of the two-terminal MR. Moreover, the electron spin-relaxation is found to be greatly suppressed in the multilayer MoS2 channel for in-plan spin injection. The underestimated long spin diffusion length (~235nm) and large spin lifetime (~46ns) open a new avenue for spintronic applications using multilayer transition metal dichalcogenides.
Molybdenum disulfide (MoS2) is a particularly interesting member of the family of two-dimensional (2D) materials due to its semiconducting and tunable electronic properties. Currently, the most reliable method for obtaining high-quality industrial scale amounts of 2D materials is chemical vapor deposition (CVD), which results in polycrystalline samples. As grain boundaries (GBs) are intrinsic defect lines within CVD-grown 2D materials, their atomic structure is of paramount importance. Here, through atomic-scale analysis of micrometer-long GBs, we show that covalently bound boundaries in 2D MoS2 tend to be decorated by nanopores. Such boundaries occur when differently oriented MoS2 grains merge during growth, whereas the overlap of grains leads to boundaries with bilayer areas. Our results suggest that the nanopore formation is related to stress release in areas with a high concentration of dislocation cores at the grain boundaries, and that the interlayer interaction leads to intrinsic rippling at the overlap regions. This provides insights for the controlled fabrication of large-scale MoS 2 samples with desired structural properties for applications.
The combination of the surface science techniques (STM, XPS, ARPES) and density-functional theory calculations was used to study the decoupling of graphene from Ni(111) by oxygen intercalation. The formation of the antiferromagnetic (AFM) NiO layer at the interface between graphene and ferromagnetic (FM) Ni is found, where graphene protects the underlying AFM/FM sandwich system. It is found that graphene is fully decoupled in this system and strongly $p$-doped via charge transfer with a position of the Dirac point of $(0.69pm0.02)$ eV above the Fermi level. Our theoretical analysis confirms all experimental findings, addressing also the interface properties between graphene and AFM NiO.
The microscopic process of oxidative etching of two-dimensional molybdenum disulfide (2D MoS2) at an atomic scale is investigated using a correlative TEM-etching study. MoS2 flakes on graphene TEM grids are precisely tracked and characterized by TEM before and after the oxidative etching. This allows us to determine the structural change with an atomic resolution on the edges of the domains, of well-oriented triangular pits and along the grain boundaries. We observe that the etching mostly starts from the open edges, grain boundaries and pre-existing atomic defects. A zigzag Mo edge is assigned as the dominant termination of the triangular pits, and profound terraces and grooves are observed on the etched edges. Based on the statistical TEM analysis, we reveal possible routes for the kinetics of the oxidative etching in 2D MoS2, which should also be applicable for other 2D transition metal dichalcogenide materials like MoSe2 and WS2.
Porous single layer molybdenum disulfide (MoS$_2$) is a promising material for applications such as DNA sequencing and water desalination. In this work, we introduce irradiation with highly charged ions (HCIs) as a new technique to fabricate well-defined pores in MoS$_2$. Surprisingly, we find a linear increase of the pore creation efficiency over a broad range of potential energies. Comparison to atomistic simulations reveals the critical role of energy deposition from the ion to the material through electronic excitation in the defect creation process, and suggests an enrichment in molybdenum in the vicinity of the pore edges at least for ions with low potential energies. Analysis of the irradiated samples with atomic resolution scanning transmission electron microscopy reveals a clear dependence of the pore size on the potential energy of the projectiles, establishing irradiation with highly charged ions as an effective method to create pores with narrow size distributions and radii between ca. 0.3 and 3 nm.