Do you want to publish a course? Click here

Towards 3D Dance Motion Synthesis and Control

62   0   0.0 ( 0 )
 Added by Wenlin Zhuang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

3D human dance motion is a cooperative and elegant social movement. Unlike regular simple locomotion, it is challenging to synthesize artistic dance motions due to the irregularity, kinematic complexity and diversity. It requires the synthesized dance is realistic, diverse and controllable. In this paper, we propose a novel generative motion model based on temporal convolution and LSTM,TC-LSTM, to synthesize realistic and diverse dance motion. We introduce a unique control signal, dance melody line, to heighten controllability. Hence, our model, and its switch for control signals, promote a variety of applications: random dance synthesis, music-to-dance, user control, and more. Our experiments demonstrate that our model can synthesize artistic dance motion in various dance types. Compared with existing methods, our method achieved start-of-the-art results.



rate research

Read More

This paper introduces a new generative deep learning network for human motion synthesis and control. Our key idea is to combine recurrent neural networks (RNNs) and adversarial training for human motion modeling. We first describe an efficient method for training a RNNs model from prerecorded motion data. We implement recurrent neural networks with long short-term memory (LSTM) cells because they are capable of handling nonlinear dynamics and long term temporal dependencies present in human motions. Next, we train a refiner network using an adversarial loss, similar to Generative Adversarial Networks (GANs), such that the refined motion sequences are indistinguishable from real motion capture data using a discriminative network. We embed contact information into the generative deep learning model to further improve the performance of our generative model. The resulting model is appealing to motion synthesis and control because it is compact, contact-aware, and can generate an infinite number of naturally looking motions with infinite lengths. Our experiments show that motions generated by our deep learning model are always highly realistic and comparable to high-quality motion capture data. We demonstrate the power and effectiveness of our models by exploring a variety of applications, ranging from random motion synthesis, online/offline motion control, and motion filtering. We show the superiority of our generative model by comparison against baseline models.
We propose a novel deep generative model based on causal convolutions for multi-subject motion modeling and synthesis, which is inspired by the success of WaveNet in multi-subject speech synthesis. However, it is nontrivial to adapt WaveNet to handle high-dimensional and physically constrained motion data. To this end, we add an encoder and a decoder to the WaveNet to translate the motion data into features and back to the predicted motions. We also add 1D convolution layers to take skeleton configuration as an input to model skeleton variations across different subjects. As a result, our network can scale up well to large-scale motion data sets across multiple subjects and support various applications, such as random and controllable motion synthesis, motion denoising, and motion completion, in a unified way. Complex motions, such as punching, kicking and, kicking while punching, are also well handled. Moreover, our network can synthesize motions for novel skeletons not in the training dataset. After fine-tuning the network with a few motion data of the novel skeleton, it is able to capture the personalized style implied in the motion and generate high-quality motions for the skeleton. Thus, it has the potential to be used as a pre-trained network in few-shot learning for motion modeling and synthesis. Experimental results show that our model can effectively handle the variation of skeleton configurations, and it runs fast to synthesize different types of motions on-line. We also perform user studies to verify that the quality of motions generated by our network is superior to the motions of state-of-the-art human motion synthesis methods.
We propose a new method for realistic human motion transfer using a generative adversarial network (GAN), which generates a motion video of a target character imitating actions of a source character, while maintaining high authenticity of the generated results. We tackle the problem by decoupling and recombining the posture information and appearance information of both the source and target characters. The innovation of our approach lies in the use of the projection of a reconstructed 3D human model as the condition of GAN to better maintain the structural integrity of transfer results in different poses. We further introduce a detail enhancement net to enhance the details of transfer results by exploiting the details in real source frames. Extensive experiments show that our approach yields better results both qualitatively and quantitatively than the state-of-the-art methods.
84 - Zijie Ye , Haozhe Wu , Jia Jia 2020
Dance and music are two highly correlated artistic forms. Synthesizing dance motions has attracted much attention recently. Most previous works conduct music-to-dance synthesis via directly music to human skeleton keypoints mapping. Meanwhile, human choreographers design dance motions from music in a two-stage manner: they firstly devise multiple choreographic dance units (CAUs), each with a series of dance motions, and then arrange the CAU sequence according to the rhythm, melody and emotion of the music. Inspired by these, we systematically study such two-stage choreography approach and construct a dataset to incorporate such choreography knowledge. Based on the constructed dataset, we design a two-stage music-to-dance synthesis framework ChoreoNet to imitate human choreography procedure. Our framework firstly devises a CAU prediction model to learn the mapping relationship between music and CAU sequences. Afterwards, we devise a spatial-temporal inpainting model to convert the CAU sequence into continuous dance motions. Experimental results demonstrate that the proposed ChoreoNet outperforms baseline methods (0.622 in terms of CAU BLEU score and 1.59 in terms of user study score).
Using joint actuators to drive the skeletal movements is a common practice in character animation, but the resultant torque patterns are often unnatural or infeasible for real humans to achieve. On the other hand, physiologically-based models explicitly simulate muscles and tendons and thus produce more human-like movements and torque patterns. This paper introduces a technique to transform an optimal control problem formulated in the muscle-actuation space to an equivalent problem in the joint-actuation space, such that the solutions to both problems have the same optimal value. By solving the equivalent problem in the joint-actuation space, we can generate human-like motions comparable to those generated by musculotendon models, while retaining the benefit of simple modeling and fast computation offered by joint-actuation models. Our method transforms constant bounds on muscle activations to nonlinear, state-dependent torque limits in the joint-actuation space. In addition, the metabolic energy function on muscle activations is transformed to a nonlinear function of joint torques, joint configuration and joint velocity. Our technique can also benefit policy optimization using deep reinforcement learning approach, by providing a more anatomically realistic action space for the agent to explore during the learning process. We take the advantage of the physiologically-based simulator, OpenSim, to provide training data for learning the torque limits and the metabolic energy function. Once trained, the same torque limits and the energy function can be applied to drastically different motor tasks formulated as either trajectory optimization or policy learning. Codebase: https://github.com/jyf588/lrle and https://github.com/jyf588/lrle-rl-examples
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا