Do you want to publish a course? Click here

ChoreoNet: Towards Music to Dance Synthesis with Choreographic Action Unit

85   0   0.0 ( 0 )
 Added by Zijie Ye
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Dance and music are two highly correlated artistic forms. Synthesizing dance motions has attracted much attention recently. Most previous works conduct music-to-dance synthesis via directly music to human skeleton keypoints mapping. Meanwhile, human choreographers design dance motions from music in a two-stage manner: they firstly devise multiple choreographic dance units (CAUs), each with a series of dance motions, and then arrange the CAU sequence according to the rhythm, melody and emotion of the music. Inspired by these, we systematically study such two-stage choreography approach and construct a dataset to incorporate such choreography knowledge. Based on the constructed dataset, we design a two-stage music-to-dance synthesis framework ChoreoNet to imitate human choreography procedure. Our framework firstly devises a CAU prediction model to learn the mapping relationship between music and CAU sequences. Afterwards, we devise a spatial-temporal inpainting model to convert the CAU sequence into continuous dance motions. Experimental results demonstrate that the proposed ChoreoNet outperforms baseline methods (0.622 in terms of CAU BLEU score and 1.59 in terms of user study score).



rate research

Read More

We present a learning-based approach with pose perceptual loss for automatic music video generation. Our method can produce a realistic dance video that conforms to the beats and rhymes of almost any given music. To achieve this, we firstly generate a human skeleton sequence from music and then apply the learned pose-to-appearance mapping to generate the final video. In the stage of generating skeleton sequences, we utilize two discriminators to capture different aspects of the sequence and propose a novel pose perceptual loss to produce natural dances. Besides, we also provide a new cross-modal evaluation to evaluate the dance quality, which is able to estimate the similarity between two modalities of music and dance. Finally, a user study is conducted to demonstrate that dance video synthesized by the presented approach produces surprisingly realistic results. The results are shown in the supplementary video at https://youtu.be/0rMuFMZa_K4
118 - Yinglin Duan 2020
Music-to-dance translation is a brand-new and powerful feature in recent role-playing games. Players can now let their characters dance along with specified music clips and even generate fan-made dance videos. Previous works of this topic consider music-to-dance as a supervised motion generation problem based on time-series data. However, these methods suffer from limited training data pairs and the degradation of movements. This paper provides a new perspective for this task where we re-formulate the translation problem as a piece-wise dance phrase retrieval problem based on the choreography theory. With such a design, players are allowed to further edit the dance movements on top of our generation while other regression based methods ignore such user interactivity. Considering that the dance motion capture is an expensive and time-consuming procedure which requires the assistance of professional dancers, we train our method under a semi-supervised learning framework with a large unlabeled dataset (20x than labeled data) collected. A co-ascent mechanism is introduced to improve the robustness of our network. Using this unlabeled dataset, we also introduce self-supervised pre-training so that the translator can understand the melody, rhythm, and other components of music phrases. We show that the pre-training significantly improves the translation accuracy than that of training from scratch. Experimental results suggest that our method not only generalizes well over various styles of music but also succeeds in expert-level choreography for game players.
Dance and music typically go hand in hand. The complexities in dance, music, and their synchronisation make them fascinating to study from a computational creativity perspective. While several works have looked at generating dance for a given music, automatically generating music for a given dance remains under-explored. This capability could have several creative expression and entertainment applications. We present some early explorations in this direction. We present a search-based offline approach that generates music after processing the entire dance video and an online approach that uses a deep neural network to generate music on-the-fly as the video proceeds. We compare these approaches to a strong heuristic baseline via human studies and present our findings. We have integrated our online approach in a live demo! A video of the demo can be found here: https://sites.google.com/view/dance2music/live-demo.
We present AIST++, a new multi-modal dataset of 3D dance motion and music, along with FACT, a Full-Attention Cross-modal Transformer network for generating 3D dance motion conditioned on music. The proposed AIST++ dataset contains 5.2 hours of 3D dance motion in 1408 sequences, covering 10 dance genres with multi-view videos with known camera poses -- the largest dataset of this kind to our knowledge. We show that naively applying sequence models such as transformers to this dataset for the task of music conditioned 3D motion generation does not produce satisfactory 3D motion that is well correlated with the input music. We overcome these shortcomings by introducing key changes in its architecture design and supervision: FACT model involves a deep cross-modal transformer block with full-attention that is trained to predict $N$ future motions. We empirically show that these changes are key factors in generating long sequences of realistic dance motion that are well-attuned to the input music. We conduct extensive experiments on AIST++ with user studies, where our method outperforms recent state-of-the-art methods both qualitatively and quantitatively.
Facial action unit recognition has many applications from market research to psychotherapy and from image captioning to entertainment. Despite its recent progress, deployment of these models has been impeded due to their limited generalization to unseen people and demographics. This work conducts an in-depth analysis of performance across several dimensions: individuals(40 subjects), genders (male and female), skin types (darker and lighter), and databases (BP4D and DISFA). To help suppress the variance in data, we use the notion of self-supervised denoising autoencoders to design a method for deep face normalization(DeepFN) that transfers facial expressions of different people onto a common facial template which is then used to train and evaluate facial action recognition models. We show that person-independent models yield significantly lower performance (55% average F1 and accuracy across 40 subjects) than person-dependent models (60.3%), leading to a generalization gap of 5.3%. However, normalizing the data with the newly introduced DeepFN significantly increased the performance of person-independent models (59.6%), effectively reducing the gap. Similarly, we observed generalization gaps when considering gender (2.4%), skin type (5.3%), and dataset (9.4%), which were significantly reduced with the use of DeepFN. These findings represent an important step towards the creation of more generalizable facial action unit recognition systems.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا