No Arabic abstract
Fiducial inference, as generalized by Hannig et al. (2016), is applied to nonparametric g-modeling (Efron, 2016) in the discrete case. We propose a computationally efficient algorithm to sample from the fiducial distribution, and use generated samples to construct point estimates and confidence intervals. We study the theoretical properties of the fiducial distribution and perform extensive simulations in various scenarios. The proposed approach gives rise to surprisingly good statistical performance in terms of the mean squared error of point estimators and coverage of confidence intervals. Furthermore, we apply the proposed fiducial method to estimate the probability of each satellite site being malignant using gastric adenocarcinoma data with 844 patients (Efron, 2016).
We consider nonparametric measurement error density deconvolution subject to heteroscedastic measurement errors as well as symmetry about zero and shape constraints, in particular unimodality. The problem is motivated by applications where the observed data are estimated effect sizes from regressions on multiple factors, where the target is the distribution of the true effect sizes. We exploit the fact that any symmetric and unimodal density can be expressed as a mixture of symmetric uniform densities, and model the mixing density in a new way using a Dirichlet process location-mixture of Gamma distributions. We do the computations within a Bayesian context, describe a simple scalable implementation that is linear in the sample size, and show that the estimate of the unknown target density is consistent. Within our application context of regression effect sizes, the target density is likely to have a large probability near zero (the near null effects) coupled with a heavy-tailed distribution (the actual effects). Simulations show that unlike standard deconvolution methods, our Constrained Bayesian Deconvolution method does a much better job of reconstruction of the target density. Applications to a genome-wise association study (GWAS) and microarray data reveal similar results.
We consider the nonparametric estimation of the density function of weakly and strongly dependent processes with noisy observations. We show that in the ordinary smooth case the optimal bandwidth choice can be influenced by long range dependence, as opposite to the standard case, when no noise is present. In particular, if the dependence is moderate the bandwidth, the rates of mean-square convergence and, additionally, central limit theorem are the same as in the i.i.d. case. If the dependence is strong enough, then the bandwidth choice is influenced by the strength of dependence, which is different when compared to the non-noisy case. Also, central limit theorem are influenced by the strength of dependence. On the other hand, if the density is supersmooth, then long range dependence has no effect at all on the optimal bandwidth choice.
Nonparametric methodologies are proposed to assess college students performance. Emphasis is given to gender and sector of High School. The application concerns the University of Campinas, a research university in Southeast Brazil. In Brazil college is based on a somewhat rigid set of subjects for each major. Thence a students relative performance can not be accurately measured by the Grade Point Average or by any other single measure. We then define individual vectors of course grades. These vectors are used in pairwise comparisons of common subject grades for individuals that entered college in the same year. The relative college performances of any two students is compared to their relative performances on the Entrance Exam Score. A test based on generalized U-statistics is developed for homogeneity of some predefined groups. Asymptotic normality of the test statistic is true for both null and alternative hypotheses. Maximum power is attained by employing the union intersection principle.
We give the distribution of $M_n$, the maximum of a sequence of $n$ observations from a moving average of order 1. Solutions are first given in terms of repeated integrals and then for the case where the underlying independent random variables are discrete. When the correlation is positive, $$ P(M_n max^n_{i=1} X_i leq x) = sum_{j=1}^infty beta_{jx} u_{jx}^{n} approx B_{x} r{1x}^{n} $$ where ${ u_{jx}}$ are the eigenvalues of a certain matrix, $r_{1x}$ is the maximum magnitude of the eigenvalues, and $I$ depends on the number of possible values of the underlying random variables. The eigenvalues do not depend on $x$ only on its range.
Fiducial Inference, introduced by Fisher in the 1930s, has a long history, which at times aroused passionate disagreements. However, its application has been largely confined to relatively simple parametric problems. In this paper, we present what might be the first time fiducial inference, as generalized by Hannig et al. (2016), is systematically applied to estimation of a nonparametric survival function under right censoring. We find that the resulting fiducial distribution gives rise to surprisingly good statistical procedures applicable to both one sample and two sample problems. In particular, we use the fiducial distribution of a survival function to construct pointwise and curvewise confidence intervals for the survival function, and propose tests based on the curvewise confidence interval. We establish a functional Bernstein-von Mises theorem, and perform thorough simulation studies in scenarios with different levels of censoring. The proposed fiducial based confidence intervals maintain coverage in situations where asymptotic methods often have substantial coverage problems. Furthermore, the average length of the proposed confidence intervals is often shorter than the length of competing methods that maintain coverage. Finally, the proposed fiducial test is more powerful than various types of log-rank tests and sup log-rank tests in some scenarios. We illustrate the proposed fiducial test comparing chemotherapy against chemotherapy combined with radiotherapy using data from the treatment of locally unresectable gastric cancer.