Do you want to publish a course? Click here

Nonparametric Bayesian Deconvolution of a Symmetric Unimodal Density

113   0   0.0 ( 0 )
 Added by Ya Su
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We consider nonparametric measurement error density deconvolution subject to heteroscedastic measurement errors as well as symmetry about zero and shape constraints, in particular unimodality. The problem is motivated by applications where the observed data are estimated effect sizes from regressions on multiple factors, where the target is the distribution of the true effect sizes. We exploit the fact that any symmetric and unimodal density can be expressed as a mixture of symmetric uniform densities, and model the mixing density in a new way using a Dirichlet process location-mixture of Gamma distributions. We do the computations within a Bayesian context, describe a simple scalable implementation that is linear in the sample size, and show that the estimate of the unknown target density is consistent. Within our application context of regression effect sizes, the target density is likely to have a large probability near zero (the near null effects) coupled with a heavy-tailed distribution (the actual effects). Simulations show that unlike standard deconvolution methods, our Constrained Bayesian Deconvolution method does a much better job of reconstruction of the target density. Applications to a genome-wise association study (GWAS) and microarray data reveal similar results.



rate research

Read More

We consider the problem of multivariate density deconvolution when the interest lies in estimating the distribution of a vector-valued random variable but precise measurements of the variable of interest are not available, observations being contaminated with additive measurement errors. The existing sparse literature on the problem assumes the density of the measurement errors to be completely known. We propose robust Bayesian semiparametric multivariate deconvolution approaches when the measurement error density is not known but replicated proxies are available for each unobserved value of the random vector. Additionally, we allow the variability of the measurement errors to depend on the associated unobserved value of the vector of interest through unknown relationships which also automatically includes the case of multivariate multiplicative measurement errors. Basic properties of finite mixture models, multivariate normal kernels and exchangeable priors are exploited in many novel ways to meet the modeling and computational challenges. Theoretical results that show the flexibility of the proposed methods are provided. We illustrate the efficiency of the proposed methods in recovering the true density of interest through simulation experiments. The methodology is applied to estimate the joint consumption pattern of different dietary components from contaminated 24 hour recalls.
We consider the problem of multivariate density deconvolution where the distribution of a random vector needs to be estimated from replicates contaminated with conditionally heteroscedastic measurement errors. We propose a conceptually straightforward yet fundamentally novel and highly robust approach to multivariate density deconvolution by stochastically rotating the replicates toward the corresponding true latent values. We also address the additionally significantly challenging problem of accommodating conditionally heteroscedastic measurement errors in this newly introduced framework. We take a Bayesian route to estimation and inference, implemented via an efficient Markov chain Monte Carlo algorithm, appropriately accommodating uncertainty in all aspects of our analysis. Asymptotic convergence guarantees for the method are also established. We illustrate the methods empirical efficacy through simulation experiments and its practical utility in estimating the long-term joint average intakes of different dietary components from their measurement error contaminated 24-hour dietary recalls.
93 - Yifan Cui , Jan Hannig 2020
Fiducial inference, as generalized by Hannig et al. (2016), is applied to nonparametric g-modeling (Efron, 2016) in the discrete case. We propose a computationally efficient algorithm to sample from the fiducial distribution, and use generated samples to construct point estimates and confidence intervals. We study the theoretical properties of the fiducial distribution and perform extensive simulations in various scenarios. The proposed approach gives rise to surprisingly good statistical performance in terms of the mean squared error of point estimators and coverage of confidence intervals. Furthermore, we apply the proposed fiducial method to estimate the probability of each satellite site being malignant using gastric adenocarcinoma data with 844 patients (Efron, 2016).
Estimating the marginal and joint densities of the long-term average intakes of different dietary components is an important problem in nutritional epidemiology. Since these variables cannot be directly measured, data are usually collected in the form of 24-hour recalls of the intakes, which show marked patterns of conditional heteroscedasticity. Significantly compounding the challenges, the recalls for episodically consumed dietary components also include exact zeros. The problem of estimating the density of the latent long-time intakes from their observed measurement error contaminated proxies is then a problem of deconvolution of densities with zero-inflated data. We propose a Bayesian semiparametric solution to the problem, building on a novel hierarchical latent variable framework that translates the problem to one involving continuous surrogates only. Crucial to accommodating important aspects of the problem, we then design a copula-based approach to model the involved joint distributions, adopting different modeling strategies for the marginals of the different dietary components. We design efficient Markov chain Monte Carlo algorithms for posterior inference and illustrate the efficacy of the proposed method through simulation experiments. Applied to our motivating nutritional epidemiology problems, compared to other approaches, our method provides more realistic estimates of the consumption patterns of episodically consumed dietary components.
In many applications there is interest in estimating the relation between a predictor and an outcome when the relation is known to be monotone or otherwise constrained due to the physical processes involved. We consider one such application--inferring time-resolved aerosol concentration from a low-cost differential pressure sensor. The objective is to estimate a monotone function and make inference on the scaled first derivative of the function. We proposed Bayesian nonparametric monotone regression which uses a Bernstein polynomial basis to construct the regression function and puts a Dirichlet process prior on the regression coefficients. The base measure of the Dirichlet process is a finite mixture of a mass point at zero and a truncated normal. This construction imposes monotonicity while clustering the basis functions. Clustering the basis functions reduces the parameter space and allows the estimated regression function to be linear. With the proposed approach we can make closed-formed inference on the derivative of the estimated function including full quantification of uncertainty. In a simulation study the proposed method performs similar to other monotone regression approaches when the true function is wavy but performs better when the true function is linear. We apply the method to estimate time-resolved aerosol concentration with a newly-developed portable aerosol monitor. The R package bnmr is made available to implement the method.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا