No Arabic abstract
We examine the many-body localization (MBL) phase transition in one-dimensional quantum systems with quenched randomness and short-range interactions. Following recent works, we use a strong-randomness renormalization group (RG) approach where the phase transition is due to the so-called avalanche instability of the MBL phase. We show that the critical behavior can be determined analytically within this RG. On a rough $textit{qualitative}$ level the RG flow near the critical fixed point is similar to the Kosterlitz-Thouless (KT) flow as previously shown, but there are important differences in the critical behavior. Thus we show that this MBL transition is in a new universality class that is different from KT. The divergence of the correlation length corresponds to critical exponent $ u rightarrow infty$, but the divergence is weaker than for the KT transition.
Using a new approximate strong-randomness renormalization group (RG), we study the many-body localized (MBL) phase and phase transition in one-dimensional quantum systems with short-range interactions and quenched disorder. Our RG is built on those of Zhang $textit{et al.}$ [1] and Goremykina $textit{et al.}$ [2], which are based on thermal and insulating blocks. Our main addition is to characterize each insulating block with two lengths: a physical length, and an internal decay length $zeta$ for its effective interactions. In this approach, the MBL phase is governed by a RG fixed line that is parametrized by a global decay length $tilde{zeta}$, and the rare large thermal inclusions within the MBL phase have a fractal geometry. As the phase transition is approached from within the MBL phase, $tilde{zeta}$ approaches the finite critical value corresponding to the avalanche instability, and the fractal dimension of large thermal inclusions approaches zero. Our analysis is consistent with a Kosterlitz-Thouless-like RG flow, with no intermediate critical MBL phase.
We investigate dynamical quantum phase transitions in disordered quantum many-body models that can support many-body localized phases. Employing $l$-bits formalism, we lay out the conditions for which singularities indicative of the transitions appear in the context of many-body localization. Using the combination of the mapping onto $l$-bits and exact diagonalization results, we explicitly demonstrate the presence of these singularities for a candidate model that features many-body localization. Our work paves the way for understanding dynamical quantum phase transitions in the context of many-body localization, and elucidating whether different phases of the latter can be detected from analyzing the former. The results presented are experimentally accessible with state-of-the-art ultracold-atom and ion-trap setups.
Precise nature of MBL transitions in both random and quasiperiodic (QP) systems remains elusive so far. In particular, whether MBL transitions in QP and random systems belong to the same universality class or two distinct ones has not been decisively resolved. Here we investigate MBL transitions in one-dimensional ($d!=!1$) QP systems as well as in random systems by state-of-the-art real-space renormalization group (RG) calculation. Our real-space RG shows that MBL transitions in 1D QP systems are characterized by the critical exponent $ u!approx!2.4$, which respects the Harris-Luck bound ($ u!>!1/d$) for QP systems. Note that $ u!approx! 2.4$ for QP systems also satisfies the Harris-CCFS bound ($ u!>!2/d$) for random systems, which implies that MBL transitions in 1D QP systems are stable against weak quenched disorder since randomness is Harris irrelevant at the transition. We shall briefly discuss experimental means to measure $ u$ of QP-induced MBL transitions.
Phase transitions are driven by collective fluctuations of a systems constituents that emerge at a critical point. This mechanism has been extensively explored for classical and quantum systems in equilibrium, whose critical behavior is described by a general theory of phase transitions. Recently, however, fundamentally distinct phase transitions have been discovered for out-of-equilibrium quantum systems, which can exhibit critical behavior that defies this description and is not well understood. A paradigmatic example is the many-body-localization (MBL) transition, which marks the breakdown of quantum thermalization. Characterizing quantum critical behavior in an MBL system requires the measurement of its entanglement properties over space and time, which has proven experimentally challenging due to stringent requirements on quantum state preparation and system isolation. Here, we observe quantum critical behavior at the MBL transition in a disordered Bose-Hubbard system and characterize its entanglement properties via its quantum correlations. We observe strong correlations, whose emergence is accompanied by the onset of anomalous diffusive transport throughout the system, and verify their critical nature by measuring their system-size dependence. The correlations extend to high orders in the quantum critical regime and appear to form via a sparse network of many-body resonances that spans the entire system. Our results unify the systems microscopic structure with its macroscopic quantum critical behavior, and they provide an essential step towards understanding criticality and universality in non-equilibrium systems.
We provide a simple and predictive random-matrix framework that naturally generalizes Pages law for ergodic many-body systems by incorporating a finite entanglement localization length. By comparing a highly structured one-dimensional model to a completely unstructured model and a physical system, we uncover a remarkable degree of universality, suggesting that the effective localization length is a universal combination of model parameters up until it drops down to the microscopic scale.