Do you want to publish a course? Click here

Recent progress in the $L_p$ theory for elliptic and parabolic equations with discontinuous coefficients

143   0   0.0 ( 0 )
 Added by Hongjie Dong
 Publication date 2020
  fields
and research's language is English
 Authors Hongjie Dong




Ask ChatGPT about the research

In this paper, we review some results over the last 10-15 years on elliptic and parabolic equations with discontinuous coefficients. We begin with an approach given by N. V. Krylov to parabolic equations in the whole space with VMO$_x$ coefficients. We then discuss some subsequent development including elliptic and parabolic equations with coefficients which are allowed to be merely measurable in one or two space directions, weighted $L_p$ estimates with Muckenhoupt ($A_p$) weights, non-local elliptic and parabolic equations, as well as fully nonlinear elliptic and parabolic equations.



rate research

Read More

78 - Hongjie Dong , Doyoon Kim 2016
We prove generalized Fefferman-Stein type theorems on sharp functions with $A_p$ weights in spaces of homogeneous type with either finite or infinite underlying measure. We then apply these results to establish mixed-norm weighted $L_p$-estimates for elliptic and parabolic equations/systems with (partially) BMO coefficients in regular or irregular domains.
76 - Hongjie Dong , Tuoc Phan 2018
In this paper, we study both elliptic and parabolic equations in non-divergence form with singular degenerate coefficients. Weighted and mixed-norm $L_p$-estimates and solvability are established under some suitable partially weighted BMO regularity conditions on the coefficients. When the coefficients are constants, the operators are reduced to extensional operators which arise in the study of fractional heat equations and fractional Laplace equations. Our results are new even in this setting and in the unmixed case. For the proof, we establish both interior and boundary Lipschitz estimates for solutions and for higher order derivatives of solutions to homogeneous equations. We then employ the perturbation method by using the Fefferman-Stein sharp function theorem, the Hardy-Littlewood maximum function theorem, as well as a weighted Hardys inequality.
92 - Hongjie Dong , Doyoon Kim 2018
We establish the $L_p$-solvability for time fractional parabolic equations when coefficients are merely measurable in the time variable. In the spatial variables, the leading coefficients locally have small mean oscillations. Our results extend a recent result in [6] to a large extent.
142 - Hongjie Dong , Doyoon Kim 2019
In this paper, we establish $L_p$ estimates and solvability for time fractional divergence form parabolic equations in the whole space when leading coefficients are merely measurable in one spatial variable and locally have small mean oscillations with respect to the other variables. The corresponding results for equations on a half space are also derived.
229 - Hongjie Dong , Doyoon Kim 2014
We consider both divergence and non-divergence parabolic equations on a half space in weighted Sobolev spaces. All the leading coefficients are assumed to be only measurable in the time and one spatial variable except one coefficient, which is assumed to be only measurable either in the time or the spatial variable. As functions of the other variables the coefficients have small bounded mean oscillation (BMO) semi-norms. The lower-order coefficients are allowed to blow up near the boundary with a certain optimal growth condition. As a corollary, we also obtain the corresponding results for elliptic equations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا