We establish the $L_p$-solvability for time fractional parabolic equations when coefficients are merely measurable in the time variable. In the spatial variables, the leading coefficients locally have small mean oscillations. Our results extend a recent result in [6] to a large extent.
In this paper, we establish $L_p$ estimates and solvability for time fractional divergence form parabolic equations in the whole space when leading coefficients are merely measurable in one spatial variable and locally have small mean oscillations with respect to the other variables. The corresponding results for equations on a half space are also derived.
We consider time fractional parabolic equations in both divergence and non-divergence form when the leading coefficients $a^{ij}$ are measurable functions of $(t,x_1)$ except for $a^{11}$ which is a measurable function of either $t$ or $x_1$. We obtain the solvability in Sobolev spaces of the equations in the whole space, on a half space, or on a partially bounded domain. The proofs use a level set argument, a scaling argument, and embeddings in fractional parabolic Sobolev spaces for which we give a direct and elementary proof.
We obtain $L_p$ estimates for fractional parabolic equations with space-time non-local operators $$ partial_t^alpha u - Lu= f quad mathrm{in} quad (0,T) times mathbb{R}^d,$$ where $partial_t^alpha u$ is the Caputo fractional derivative of order $alpha in (0,1]$, $Tin (0,infty)$, and $$Lu(t,x) := int_{ mathbb{R}^d} bigg( u(t,x+y)-u(t,x) - ycdot abla_xu(t,x)chi^{(sigma)}(y)bigg)K(t,x,y),dy $$ is an integro-differential operator in the spatial variables. Here we do not impose any regularity assumption on the kernel $K$ with respect to $t$ and $y$. We also derive a weighted mixed-norm estimate for the equations with operators that are local in time, i.e., $alpha = 1$, which extend the previous results by using a quite different method.
We prove generalized Fefferman-Stein type theorems on sharp functions with $A_p$ weights in spaces of homogeneous type with either finite or infinite underlying measure. We then apply these results to establish mixed-norm weighted $L_p$-estimates for elliptic and parabolic equations/systems with (partially) BMO coefficients in regular or irregular domains.
In this paper, we study both elliptic and parabolic equations in non-divergence form with singular degenerate coefficients. Weighted and mixed-norm $L_p$-estimates and solvability are established under some suitable partially weighted BMO regularity conditions on the coefficients. When the coefficients are constants, the operators are reduced to extensional operators which arise in the study of fractional heat equations and fractional Laplace equations. Our results are new even in this setting and in the unmixed case. For the proof, we establish both interior and boundary Lipschitz estimates for solutions and for higher order derivatives of solutions to homogeneous equations. We then employ the perturbation method by using the Fefferman-Stein sharp function theorem, the Hardy-Littlewood maximum function theorem, as well as a weighted Hardys inequality.