No Arabic abstract
The task of large-scale retrieval-based image localization is to estimate the geographical location of a query image by recognizing its nearest reference images from a city-scale dataset. However, the general public benchmarks only provide noisy GPS labels associated with the training images, which act as weak supervisions for learning image-to-image similarities. Such label noise prevents deep neural networks from learning discriminative features for accurate localization. To tackle this challenge, we propose to self-supervise image-to-region similarities in order to fully explore the potential of difficult positive images alongside their sub-regions. The estimated image-to-region similarities can serve as extra training supervision for improving the network in generations, which could in turn gradually refine the fine-grained similarities to achieve optimal performance. Our proposed self-enhanced image-to-region similarity labels effectively deal with the training bottleneck in the state-of-the-art pipelines without any additional parameters or manual annotations in both training and inference. Our method outperforms state-of-the-arts on the standard localization benchmarks by noticeable margins and shows excellent generalization capability on multiple image retrieval datasets.
We introduce RP2K, a new large-scale retail product dataset for fine-grained image classification. Unlike previous datasets focusing on relatively few products, we collect more than 500,000 images of retail products on shelves belonging to 2000 different products. Our dataset aims to advance the research in retail object recognition, which has massive applications such as automatic shelf auditing and image-based product information retrieval. Our dataset enjoys following properties: (1) It is by far the largest scale dataset in terms of product categories. (2) All images are captured manually in physical retail stores with natural lightings, matching the scenario of real applications. (3) We provide rich annotations to each object, including the sizes, shapes and flavors/scents. We believe our dataset could benefit both computer vision research and retail industry. Our dataset is publicly available at https://www.pinlandata.com/rp2k_dataset.
Retrieving content relevant images from a large-scale fine-grained dataset could suffer from intolerably slow query speed and highly redundant storage cost, due to high-dimensional real-valued embeddings which aim to distinguish subtle visual differences of fine-grained objects. In this paper, we study the novel fine-grained hashing topic to generate compact binary codes for fine-grained images, leveraging the search and storage efficiency of hash learning to alleviate the aforementioned problems. Specifically, we propose a unified end-to-end trainable network, termed as ExchNet. Based on attention mechanisms and proposed attention constraints, it can firstly obtain both local and global features to represent object parts and whole fine-grained objects, respectively. Furthermore, to ensure the discriminative ability and semantic meanings consistency of these part-level features across images, we design a local feature alignment approach by performing a feature exchanging operation. Later, an alternative learning algorithm is employed to optimize the whole ExchNet and then generate the final binary hash codes. Validated by extensive experiments, our proposal consistently outperforms state-of-the-art generic hashing methods on five fine-grained datasets, which shows our effectiveness. Moreover, compared with other approximate nearest neighbor methods, ExchNet achieves the best speed-up and storage reduction, revealing its efficiency and practicality.
Fine-grained image classification is to recognize hundreds of subcategories in each basic-level category. Existing methods employ discriminative localization to find the key distinctions among subcategories. However, they generally have two limitations: (1) Discriminative localization relies on region proposal methods to hypothesize the locations of discriminative regions, which are time-consuming. (2) The training of discriminative localization depends on object or part annotations, which are heavily labor-consuming. It is highly challenging to address the two key limitations simultaneously, and existing methods only focus on one of them. Therefore, we propose a weakly supervised discriminative localization approach (WSDL) for fast fine-grained image classification to address the two limitations at the same time, and its main advantages are: (1) n-pathway end-to-end discriminative localization network is designed to improve classification speed, which simultaneously localizes multiple different discriminative regions for one image to boost classification accuracy, and shares full-image convolutional features generated by region proposal network to accelerate the process of generating region proposals as well as reduce the computation of convolutional operation. (2) Multi-level attention guided localization learning is proposed to localize discriminative regions with different focuses automatically, without using object and part annotations, avoiding the labor consumption. Different level attentions focus on different characteristics of the image, which are complementary and boost the classification accuracy. Both are jointly employed to simultaneously improve classification speed and eliminate dependence on object and part annotations. Compared with state-of-the-art methods on 2 widely-used fine-grained image classification datasets, our WSDL approach achieves the best performance.
Although recent advances in deep learning accelerated an improvement in a weakly supervised object localization (WSOL) task, there are still challenges to identify the entire body of an object, rather than only discriminative parts. In this paper, we propose a novel residual fine-grained attention (RFGA) module that autonomously excites the less activated regions of an object by utilizing information distributed over channels and locations within feature maps in combination with a residual operation. To be specific, we devise a series of mechanisms of triple-view attention representation, attention expansion, and feature calibration. Unlike other attention-based WSOL methods that learn a coarse attention map, having the same values across elements in feature maps, our proposed RFGA learns fine-grained values in an attention map by assigning different attention values for each of the elements. We validated the superiority of our proposed RFGA module by comparing it with the recent methods in the literature over three datasets. Further, we analyzed the effect of each mechanism in our RFGA and visualized attention maps to get insights.
We propose a novel approach to enhance the discriminability of Convolutional Neural Networks (CNN). The key idea is to build a tree structure that could progressively learn fine-grained features to distinguish a subset of classes, by learning features only among these classes. Such features are expected to be more discriminative, compared to features learned for all the classes. We develop a new algorithm to effectively learn the tree structure from a large number of classes. Experiments on large-scale image classification tasks demonstrate that our method could boost the performance of a given basic CNN model. Our method is quite general, hence it can potentially be used in combination with many other deep learning models.