The question of whether it is possible to compute scattering resonances of Schrodinger operators - independently of the particular potential - is addressed. A positive answer is given, and it is shown that the only information required to be known a priori is the size of the support of the potential. The potential itself is merely required to be $mathcal{C}^1$. The proof is constructive, providing a universal algorithm which only needs to access the values of the potential at any requested point.
In this paper we study the influence of an electric field on a two dimen-sional waveguide. We show that bound states that occur under a geometrical deformation of the guide turn into resonances when we apply an electric field of small intensity having a nonzero component on the longitudinal direction of the system. MSC-2010 number: 35B34,35P25, 81Q10, 82D77.
We investigate the influence of an electric field on trapped modes arising in a two-dimensional curved quantum waveguide ${bf Omega}$ i.e. bound states of the corresponding Laplace operator $-Delta_{{bf Omega}}$. Here the curvature of the guide is supposed to satisfy some assumptions of analyticity, and decays as $O(|s|^{-varepsilon}), varepsilon > 3$ at infinity. We show that under conditions on the electric field $ bf F$, ${bf H}(F):= -Delta_{{bf Omega}} + {bf F}. {bf x} $ has resonances near the discrete eigenvalues of $-Delta_{{bf Omega}}$.
We define resonances for finitely perturbed quantum walks as poles of the scattering matrix in the lower half plane. We show a resonance expansion which describes the time evolution in terms of resonances and corresponding Jordan chains. In particular, the decay rate of the survival probability is given by the imaginary part of resonances and the multiplicity. We prove generic simplicity of the resonances, although there are quantum walks with multiple resonances.
Given a self-adjoint operator $H_0$ and a relatively $H_0$-compact self-adjoint operator $V,$ the functions $r_j(z) = - sigma_j^{-1}(z),$ where $sigma_j(z)$ are eigenvalues of the compact operator $(H_0-z)^{-1}V,$ bear a lot of important information about the pair $H_0$ and $V.$ We call them coupling resonances. In case of rank one (and positive) perturbation $V,$ there is only one coupling resonance function, which is a Herglotz function. This case has been studied in depth in the literature, and appears in different situations, such as Sturm-Liouville theory, random Schrodinger operators, harnomic and spectral analyses, etc. The general case is complicated by the fact that the resonance functions are no longer single valued holomorphic functions, and potentially can have quite an erratic behaviour, typical for infinitely-valued holomorphic functions. Of special interest are those coupling resonance functions $r_z$ which approach a real number $r_{lambda+i0}$ from the interval $[0,1]$ as the spectral parameter $z=lambda+iy$ approaches a point $lambda$ of the essential spectrum, since they are responsible for spectral flow through $lambda$ inside essential spectrum when $H_0$ gets deformed to $H_1 = H_0+V$ via the path $H_0 + rV, r in [0,1].$ In this paper it is shown that if the pair $H_0,$ $V$ satisfies the limiting absorption principle, then the coupling resonance functions are well-behaved near the essential spectrum in the following sense. Let $I$ be an open interval inside the essential spectrum of $H_0$ and $epsilon>0.$ Then there exists a compact subset~$K$ of~$I$ such that $| I setminus K | < epsilon,$ and $K$ has a non-tangential neighbourhood in the upper complex half-plane, such that any coupling resonance function is either single-valued in the neighbourhood, or does not take a real value in the interval $[0,1].$
We study the direct and inverse scattering problem for the one-dimensional Schrodinger equation with steplike potentials. We give necessary and sufficient conditions for the scattering data to correspond to a potential with prescribed smoothness and prescribed decay to their asymptotics. These results are important for solving the Korteweg-de Vries equation via the inverse scattering transform.