Do you want to publish a course? Click here

Resonances in finitely perturbed quantum walks, resonance expansion and generic simplicity

288   0   0.0 ( 0 )
 Added by Kenta Higuchi
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We define resonances for finitely perturbed quantum walks as poles of the scattering matrix in the lower half plane. We show a resonance expansion which describes the time evolution in terms of resonances and corresponding Jordan chains. In particular, the decay rate of the survival probability is given by the imaginary part of resonances and the multiplicity. We prove generic simplicity of the resonances, although there are quantum walks with multiple resonances.



rate research

Read More

We consider the Dirichlet Laplacian in a three-dimensional waveguide that is a small deformation of a periodically twisted tube. The deformation is given by a bending and an additional twisting of the tube, both parametrized by a coupling constant $delta$. We expand the resolvent of the perturbed operator near the bottom of its essential spectrum and we show the existence of exactly one resonance, in the asymptotic regime of $delta$ small. We are able to perform the asymptotic expansion of the resonance in $delta$, which in particular permits us to give a quantitative geometric criterion for the existence of a discrete eigenvalue below the essential spectrum. In the particular case of perturbations of straight tubes, we are able to show the existence of resonances not only near the bottom of the essential spectrum but near each threshold in the spectrum. We also obtain the asymptotic behavior of the resonances in this situation, which is generically different from the first case.
In this paper we study the influence of an electric field on a two dimen-sional waveguide. We show that bound states that occur under a geometrical deformation of the guide turn into resonances when we apply an electric field of small intensity having a nonzero component on the longitudinal direction of the system. MSC-2010 number: 35B34,35P25, 81Q10, 82D77.
We investigate the influence of an electric field on trapped modes arising in a two-dimensional curved quantum waveguide ${bf Omega}$ i.e. bound states of the corresponding Laplace operator $-Delta_{{bf Omega}}$. Here the curvature of the guide is supposed to satisfy some assumptions of analyticity, and decays as $O(|s|^{-varepsilon}), varepsilon > 3$ at infinity. We show that under conditions on the electric field $ bf F$, ${bf H}(F):= -Delta_{{bf Omega}} + {bf F}. {bf x} $ has resonances near the discrete eigenvalues of $-Delta_{{bf Omega}}$.
The question of whether it is possible to compute scattering resonances of Schrodinger operators - independently of the particular potential - is addressed. A positive answer is given, and it is shown that the only information required to be known a priori is the size of the support of the potential. The potential itself is merely required to be $mathcal{C}^1$. The proof is constructive, providing a universal algorithm which only needs to access the values of the potential at any requested point.
208 - Georgi Raikov 2014
We consider the twisted waveguide $Omega_theta$, i.e. the domain obtained by the rotation of the bounded cross section $omega subset {mathbb R}^{2}$ of the straight tube $Omega : = omega times {mathbb R}$ at angle $theta$ which depends on the variable along the axis of $Omega$. We study the spectral properties of the Dirichlet Laplacian in $Omega_theta$, unitarily equivalent under the diffeomorphism $Omega_theta to Omega$ to the operator $H_{theta}$, self-adjoint in ${rm L}^2(Omega)$. We assume that $theta = beta - epsilon$ where $beta$ is a $2pi$-periodic function, and $epsilon$ decays at infinity. Then in the spectrum $sigma(H_beta)$ of the unperturbed operator $H_beta$ there is a semi-bounded gap $(-infty, {mathcal E}_0^+)$, and, possibly, a number of bounded open gaps $({mathcal E}_j^-, {mathcal E}_j^+)$. Since $epsilon$ decays at infinity, the essential spectra of $H_beta$ and $H_{beta - epsilon}$ coincide. We investigate the asymptotic behaviour of the discrete spectrum of $H_{beta - epsilon}$ near an arbitrary fixed spectral edge ${mathcal E}_j^pm$. We establish necessary and quite close sufficient conditions which guarantee the finiteness of $sigma_{rm disc}(H_{beta-epsilon})$ in a neighbourhood of ${mathcal E}_j^pm$. In the case where the necessary conditions are violated, we obtain the main asymptotic term of the corresponding eigenvalue counting function. The effective Hamiltonian which governs the the asymptotics of $sigma_{rm disc}(H_{beta-epsilon})$ near ${mathcal E}_j^pm$ could be represented as a finite orthogonal sum of operators of the form $-mufrac{d^2}{dx^2} - eta epsilon$, self-adjoint in ${rm L}^2({mathbb R})$; here, $mu > 0$ is a constant related to the so-called effective mass, while $eta$ is $2pi$-periodic function depending on $beta$ and $omega$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا