Do you want to publish a course? Click here

Scene Image Representation by Foreground, Background and Hybrid Features

178   0   0.0 ( 0 )
 Added by Chiranjibi Sitaula
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Previous methods for representing scene images based on deep learning primarily consider either the foreground or background information as the discriminating clues for the classification task. However, scene images also require additional information (hybrid) to cope with the inter-class similarity and intra-class variation problems. In this paper, we propose to use hybrid features in addition to foreground and background features to represent scene images. We suppose that these three types of information could jointly help to represent scene image more accurately. To this end, we adopt three VGG-16 architectures pre-trained on ImageNet, Places, and Hybrid (both ImageNet and Places) datasets for the corresponding extraction of foreground, background and hybrid information. All these three types of deep features are further aggregated to achieve our final features for the representation of scene images. Extensive experiments on two large benchmark scene datasets (MIT-67 and SUN-397) show that our method produces the state-of-the-art classification performance.



rate research

Read More

Nowadays it is prevalent to take features extracted from pre-trained deep learning models as image representations which have achieved promising classification performance. Existing methods usually consider either object-based features or scene-based features only. However, both types of features are important for complex images like scene images, as they can complement each other. In this paper, we propose a novel type of features -- hybrid deep features, for scene images. Specifically, we exploit both object-based and scene-based features at two levels: part image level (i.e., parts of an image) and whole image level (i.e., a whole image), which produces a total number of four types of deep features. Regarding the part image level, we also propose two new slicing techniques to extract part based features. Finally, we aggregate these four types of deep features via the concatenation operator. We demonstrate the effectiveness of our hybrid deep features on three commonly used scene datasets (MIT-67, Scene-15, and Event-8), in terms of the scene image classification task. Extensive comparisons show that our introduced features can produce state-of-the-art classification accuracies which are more consistent and stable than the results of existing features across all datasets.
Existing research in scene image classification has focused on either content features (e.g., visual information) or context features (e.g., annotations). As they capture different information about images which can be complementary and useful to discriminate images of different classes, we suppose the fusion of them will improve classification results. In this paper, we propose new techniques to compute content features and context features, and then fuse them together. For content features, we design multi-scale deep features based on background and foreground information in images. For context features, we use annotations of similar images available in the web to design a filter words (codebook). Our experiments in three widely used benchmark scene datasets using support vector machine classifier reveal that our proposed context and content features produce better results than existing context and content features, respectively. The fusion of the proposed two types of features significantly outperform numerous state-of-the-art features.
128 - Michel Olvera 2020
Ambient sound scenes typically comprise multiple short events occurring on top of a somewhat stationary background. We consider the task of separating these events from the background, which we call foreground-background ambient sound scene separation. We propose a deep learning-based separation framework with a suitable feature normaliza-tion scheme and an optional auxiliary network capturing the background statistics, and we investigate its ability to handle the great variety of sound classes encountered in ambient sound scenes, which have often not been seen in training. To do so, we create single-channel foreground-background mixtures using isolated sounds from the DESED and Audioset datasets, and we conduct extensive experiments with mixtures of seen or unseen sound classes at various signal-to-noise ratios. Our experimental findings demonstrate the generalization ability of the proposed approach.
Indoor image features extraction is a fundamental problem in multiple fields such as image processing, pattern recognition, robotics and so on. Nevertheless, most of the existing feature extraction methods, which extract features based on pixels, color, shape/object parts or objects on images, suffer from limited capabilities in describing semantic information (e.g., object association). These techniques, therefore, involve undesired classification performance. To tackle this issue, we propose the notion of high-level semantic features and design four steps to extract them. Specifically, we first construct the objects pattern dictionary through extracting raw objects in the images, and then retrieve and extract semantic objects from the objects pattern dictionary. We finally extract our high-level semantic features based on the calculated probability and delta parameter. Experiments on three publicly available datasets (MIT-67, Scene15 and NYU V1) show that our feature extraction approach outperforms state-of-the-art feature extraction methods for indoor image classification, given a lower dimension of our features than those methods.
The ability to decompose scenes in terms of abstract building blocks is crucial for general intelligence. Where those basic building blocks share meaningful properties, interactions and other regularities across scenes, such decompositions can simplify reasoning and facilitate imagination of novel scenarios. In particular, representing perceptual observations in terms of entities should improve data efficiency and transfer performance on a wide range of tasks. Thus we need models capable of discovering useful decompositions of scenes by identifying units with such regularities and representing them in a common format. To address this problem, we have developed the Multi-Object Network (MONet). In this model, a VAE is trained end-to-end together with a recurrent attention network -- in a purely unsupervised manner -- to provide attention masks around, and reconstructions of, regions of images. We show that this model is capable of learning to decompose and represent challenging 3D scenes into semantically meaningful components, such as objects and background elements.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا