No Arabic abstract
Indoor image features extraction is a fundamental problem in multiple fields such as image processing, pattern recognition, robotics and so on. Nevertheless, most of the existing feature extraction methods, which extract features based on pixels, color, shape/object parts or objects on images, suffer from limited capabilities in describing semantic information (e.g., object association). These techniques, therefore, involve undesired classification performance. To tackle this issue, we propose the notion of high-level semantic features and design four steps to extract them. Specifically, we first construct the objects pattern dictionary through extracting raw objects in the images, and then retrieve and extract semantic objects from the objects pattern dictionary. We finally extract our high-level semantic features based on the calculated probability and delta parameter. Experiments on three publicly available datasets (MIT-67, Scene15 and NYU V1) show that our feature extraction approach outperforms state-of-the-art feature extraction methods for indoor image classification, given a lower dimension of our features than those methods.
Previous methods for representing scene images based on deep learning primarily consider either the foreground or background information as the discriminating clues for the classification task. However, scene images also require additional information (hybrid) to cope with the inter-class similarity and intra-class variation problems. In this paper, we propose to use hybrid features in addition to foreground and background features to represent scene images. We suppose that these three types of information could jointly help to represent scene image more accurately. To this end, we adopt three VGG-16 architectures pre-trained on ImageNet, Places, and Hybrid (both ImageNet and Places) datasets for the corresponding extraction of foreground, background and hybrid information. All these three types of deep features are further aggregated to achieve our final features for the representation of scene images. Extensive experiments on two large benchmark scene datasets (MIT-67 and SUN-397) show that our method produces the state-of-the-art classification performance.
Co-occurrent visual pattern makes aggregating contextual information a common paradigm to enhance the pixel representation for semantic image segmentation. The existing approaches focus on modeling the context from the perspective of the whole image, i.e., aggregating the image-level contextual information. Despite impressive, these methods weaken the significance of the pixel representations of the same category, i.e., the semantic-level contextual information. To address this, this paper proposes to augment the pixel representations by aggregating the image-level and semantic-level contextual information, respectively. First, an image-level context module is designed to capture the contextual information for each pixel in the whole image. Second, we aggregate the representations of the same category for each pixel where the category regions are learned under the supervision of the ground-truth segmentation. Third, we compute the similarities between each pixel representation and the image-level contextual information, the semantic-level contextual information, respectively. At last, a pixel representation is augmented by weighted aggregating both the image-level contextual information and the semantic-level contextual information with the similarities as the weights. Integrating the image-level and semantic-level context allows this paper to report state-of-the-art accuracy on four benchmarks, i.e., ADE20K, LIP, COCOStuff and Cityscapes.
The existing image feature extraction methods are primarily based on the content and structure information of images, and rarely consider the contextual semantic information. Regarding some types of images such as scenes and objects, the annotations and descriptions of them available on the web may provide reliable contextual semantic information for feature extraction. In this paper, we introduce novel semantic features of an image based on the annotations and descriptions of its similar images available on the web. Specifically, we propose a new method which consists of two consecutive steps to extract our semantic features. For each image in the training set, we initially search the top $k$ most similar images from the internet and extract their annotations/descriptions (e.g., tags or keywords). The annotation information is employed to design a filter bank for each image category and generate filter words (codebook). Finally, each image is represented by the histogram of the occurrences of filter words in all categories. We evaluate the performance of the proposed features in scene image classification on three commonly-used scene image datasets (i.e., MIT-67, Scene15 and Event8). Our method typically produces a lower feature dimension than existing feature extraction methods. Experimental results show that the proposed features generate better classification accuracies than vision based and tag based features, and comparable results to deep learning based features.
Image retrieval refers to finding relevant images from an image database for a query, which is considered difficult for the gap between low-level representation of images and high-level representation of queries. Recently further developed Deep Neural Network sheds light on automatically learning high-level image representation from raw pixels. In this paper, we proposed a multi-task DNN learned for image retrieval, which contains two parts, i.e., query-sharing layers for image representation computation and query-specific layers for relevance estimation. The weights of multi-task DNN are learned on clickthrough data by Ring Training. Experimental results on both simulated and real dataset show the effectiveness of the proposed method.
Nowadays it is prevalent to take features extracted from pre-trained deep learning models as image representations which have achieved promising classification performance. Existing methods usually consider either object-based features or scene-based features only. However, both types of features are important for complex images like scene images, as they can complement each other. In this paper, we propose a novel type of features -- hybrid deep features, for scene images. Specifically, we exploit both object-based and scene-based features at two levels: part image level (i.e., parts of an image) and whole image level (i.e., a whole image), which produces a total number of four types of deep features. Regarding the part image level, we also propose two new slicing techniques to extract part based features. Finally, we aggregate these four types of deep features via the concatenation operator. We demonstrate the effectiveness of our hybrid deep features on three commonly used scene datasets (MIT-67, Scene-15, and Event-8), in terms of the scene image classification task. Extensive comparisons show that our introduced features can produce state-of-the-art classification accuracies which are more consistent and stable than the results of existing features across all datasets.