Do you want to publish a course? Click here

Frustrated Potts: Multiplicity Eliminates Chaos via Reentrance

148   0   0.0 ( 0 )
 Added by A. Nihat Berker
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The frustrated q-state Potts model is solved exactly on a hierarchical lattice, yielding chaos under rescaling, namely the signature of a spin-glass phase, as previously seen for the Ising (q=2) model. However, the ground-state entropy introduced by the (q>2)-state antiferromagnetic Potts bond induces an escape from chaos as multiplicity q increases. The frustration versus multiplicity phase diagram has a reentrant (as a function of frustration) chaotic phase.



rate research

Read More

Any two-dimensional infinite regular lattice G can be produced by tiling the plane with a finite subgraph B of G; we call B a basis of G. We introduce a two-parameter graph polynomial P_B(q,v) that depends on B and its embedding in G. The algebraic curve P_B(q,v) = 0 is shown to provide an approximation to the critical manifold of the q-state Potts model, with coupling v = exp(K)-1, defined on G. This curve predicts the phase diagram both in the ferromagnetic (v>0) and antiferromagnetic (v<0) regions. For larger bases B the approximations become increasingly accurate, and we conjecture that P_B(q,v) = 0 provides the exact critical manifold in the limit of infinite B. Furthermore, for some lattices G, or for the Ising model (q=2) on any G, P_B(q,v) factorises for any choice of B: the zero set of the recurrent factor then provides the exact critical manifold. In this sense, the computation of P_B(q,v) can be used to detect exact solvability of the Potts model on G. We illustrate the method for the square lattice, where the Potts model has been exactly solved, and the kagome lattice, where it has not. For the square lattice we correctly reproduce the known phase diagram, including the antiferromagnetic transition and the singularities in the Berker-Kadanoff phase. For the kagome lattice, taking the smallest basis with six edges we recover a well-known (but now refuted) conjecture of F.Y. Wu. Larger bases provide successive improvements on this formula, giving a natural extension of Wus approach. The polynomial predictions are in excellent agreement with numerical computations. For v>0 the accuracy of the predicted critical coupling v_c is of the order 10^{-4} or 10^{-5} for the 6-edge basis, and improves to 10^{-6} or 10^{-7} for the largest basis studied (with 36 edges).
285 - Adam Gamsa , John Cardy 2007
The scaling limit of the spin cluster boundaries of the Ising model with domain wall boundary conditions is SLE with kappa=3. We hypothesise that the three-state Potts model with appropriate boundary conditions has spin cluster boundaries which are also SLE in the scaling limit, but with kappa=10/3. To test this, we generate samples using the Wolff algorithm and test them against predictions of SLE: we examine the statistics of the Loewner driving function, estimate the fractal dimension and test against Schramms formula. The results are in support of our hypothesis.
255 - Jozef Strecka , Cesur Ekiz 2010
The spin-1/2 Ising-Heisenberg model on diamond-like decorated Bethe lattices is exactly solved with the help of decoration-iteration transformation and exact recursion relations. It is shown that the model under investigation exhibits reentrant phase transitions whenever a sufficiently high coordination number of the underlying Bethe lattice is considered.
The hamiltonian of the $N$-state superintegrable chiral Potts (SICP) model is written in terms of a coupled algebra defined by $N-1$ types of Temperley-Lieb generators. This generalises a previous result for $N=3$ obtained by J. F. Fjelstad and T. Mr{a}nsson [J. Phys. A {bf 45} (2012) 155208]. A pictorial representation of a related coupled algebra is given for the $N=3$ case which involves a generalisation of the pictorial presentation of the Temperley-Lieb algebra to include a pole around which loops can become entangled. For the two known representations of this algebra, the $N=3$ SICP chain and the staggered spin-1/2 XX chain, closed (contractible) loops have weight $sqrt{3}$ and weight $2$, respectively. For both representations closed (non-contractible) loops around the pole have weight zero. The pictorial representation provides a graphical interpretation of the algebraic relations. A key ingredient in the resolution of diagrams is a crossing relation for loops encircling a pole which involves the parameter $rho= e^{ 2pi mathrm{i}/3}$ for the SICP chain and $rho=1$ for the staggered XX chain. These $rho$ values are derived assuming the Kauffman bracket skein relation.
132 - Ryo Igarashi , Masao Ogata 2009
We investigate a 4-state ferromagnetic Potts model with a special type of geometrical frustration on a three dimensional diamond lattice by means of Wang-Landau Monte Carlo simulation motivated by a peculiar structural phase transition found in $beta$-pyrochlore oxide KOs$_2$O$_6$. We find that this model undergoes unconventional first-order phase transition; half of the spins in the system order in a two dimensional hexagonal-sheet-like structure, while the remaining half stay disordered. The ordered sheets and the disordered sheets stack one after another. We obtain a fairly large residual entropy at $T = 0$ which originates from the disordered sheets.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا