Do you want to publish a course? Click here

Rigorous criterion for reentrance in the spin-1/2 Ising-Heisenberg model on diamond-like decorated Bethe lattices

261   0   0.0 ( 0 )
 Added by Strecka Jozef
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

The spin-1/2 Ising-Heisenberg model on diamond-like decorated Bethe lattices is exactly solved with the help of decoration-iteration transformation and exact recursion relations. It is shown that the model under investigation exhibits reentrant phase transitions whenever a sufficiently high coordination number of the underlying Bethe lattice is considered.



rate research

Read More

The ground state and zero-temperature magnetization process of the spin-1/2 Ising-Heisenberg model on two-dimensional triangles-in-triangles lattices is exactly calculated using eigenstates of the smallest commuting spin clusters. Our ground-state analysis of the investigated classical--quantum spin model reveals three unconventional dimerized or trimerized quantum ground states besides two classical ground states. It is demonstrated that the spin frustration is responsible for a variety of magnetization scenarios with up to three or four intermediate magnetization plateaus of either quantum or classical nature. The exact analytical results for the Ising-Heisenberg model are confronted with the corresponding results for the purely quantum Heisenberg model, which were obtained by numerical exact diagonalizations based on the Lanczos algorithm for finite-size spin clusters of 24 and 21 sites, respectively. It is shown that the zero-temperature magnetization process of both models is quite reminiscent and hence, one may obtain some insight into the ground states of the quantum Heisenberg model from the rigorous results for the Ising-Heisenberg model even though exact ground states for the Ising-Heisenberg model do not represent true ground states for the pure quantum Heisenberg model.
The mixed spin-1/2 and spin-S Ising model on a decorated planar lattice accounting for lattice vibrations of decorating atoms is treated by making use of the canonical coordinate transformation, the decoration-iteration transformation, and the harmonic approximation. It is shown that the magnetoelastic coupling gives rise to an effective single-ion anisotropy and three-site four-spin interaction, which are responsible for the anomalous spin frustration of the decorating spins in virtue of a competition with the equilibrium nearest-neighbor exchange interaction between the nodal and decorating spins. The ground-state and finite-temperature phase diagrams are constructed for the particular case of the mixed spin-1/2 and spin-1 Ising model on a decorated square lattice for which thermal dependencies of the spontaneous magnetization and specific heat are also examined in detail. It is evidenced that a sufficiently strong magnetoelastic coupling leads to a peculiar coexistence of the antiferromagnetic long-range order of the nodal spins with the disorder of the decorating spins within the frustrated antiferromagnetic phase, which may also exhibit double reentrant phase transitions. The investigated model displays a variety of temperature dependencies of the total specific heat, which may involve in its magnetic part one or two logarithmic divergences apart from one or two additional round maxima superimposed on a standard thermal dependence of the lattice part of the specific heat.
The mixed spin-1/2 and spin-1 Ising model on the Bethe lattice with both uniaxial as well as biaxial single-ion anisotropy terms is exactly solved by combining star-triangle and triangle-star mapping transformations with exact recursion relations. Magnetic properties (magnetization, phase diagrams and compensation phenomenon) are investigated in detail. The particular attention is focused on the effect of uniaxial and biaxial single-ion anisotropies that basically influence the magnetic behavior of the spin-1 atoms.
The mixed spin-(1,1/2) Ising-Heisenberg model on a distorted diamond chain with the spin-1 nodal atoms and the spin-1/2 interstitial atoms is exactly solved by the transfer-matrix method. An influence of the geometric spin frustration and the parallelogram distortion on the ground state, magnetization, susceptibility and specific heat of the mixed-spin Ising-Heisenberg distorted diamond chain are investigated in detail. It is demonstrated that the zero-temperature magnetization curve may involve intermediate plateaus just at zero and one-half of the saturation magnetization. The temperature dependence of the specific heat may have up to three distinct peaks at zero magnetic field and up to four distinct peaks at a non-zero magnetic field. The origin of multipeak thermal behavior of the specific heat is comprehensively studied.
158 - J. Strecka , C. Ekiz 2015
The geometrically frustrated spin-1/2 Ising-Heisenberg model on triangulated Husimi lattices is exactly solved by combining the generalized star-triangle transformation with the method of exact recursion relations. The ground-state and finite-temperature phase diagrams are rigorously calculated along with both sublattice magnetizations of the Ising and Heisenberg spins. It is evidenced that the Ising-Heisenberg model on triangulated Husimi lattices with two or three inter-connected triangles-in-triangles units displays in a highly frustrated region a quantum disorder irrespective of temperature, whereas the same model on triangulated Husimi lattices with a greater connectivity of triangles-in-triangles units exhibits at low enough temperatures an outstanding quantum order due to the order-by-disorder mechanism. The quantum reduction of both sublattice magnetizations in the peculiar quantum ordered state gradually diminishes with increasing the coordination number of underlying Husimi lattice.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا