Do you want to publish a course? Click here

Racism is a Virus: Anti-Asian Hate and Counterhate in Social Media during the COVID-19 Crisis

207   0   0.0 ( 0 )
 Added by Srijan Kumar
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The spread of COVID-19 has sparked racism, hate, and xenophobia in social media targeted at Chinese and broader Asian communities. However, little is known about how racial hate spreads during a pandemic and the role of counterhate speech in mitigating the spread. Here we study the evolution and spread of anti-Asian hate speech through the lens of Twitter. We create COVID-HATE, the largest dataset of anti-Asian hate and counterhate spanning three months, containing over 30 million tweets, and a social network with over 87 million nodes. By creating a novel hand-labeled dataset of 2,400 tweets, we train a text classifier to identify hate and counterhate tweets that achieves an average AUROC of 0.852. We identify 891,204 hate and 200,198 counterhate tweets in COVID-HATE. Using this data to conduct longitudinal analysis, we find that while hateful users are less engaged in the COVID-19 discussions prior to their first anti-Asian tweet, they become more vocal and engaged afterwards compared to counterhate users. We find that bots comprise 10.4% of hateful users and are more vocal and hateful compared to non-bot users. Comparing bot accounts, we show that hateful bots are more successful in attracting followers compared to counterhate bots. Analysis of the social network reveals that hateful and counterhate users interact and engage extensively with one another, instead of living in isolated polarized communities. Furthermore, we find that hate is contagious and nodes are highly likely to become hateful after being exposed to hateful content. Importantly, our analysis reveals that counterhate messages can discourage users from turning hateful in the first place. Overall, this work presents a comprehensive overview of anti-Asian hate and counterhate content during a pandemic. The COVID-HATE dataset is available at http://claws.cc.gatech.edu/covid.



rate research

Read More

Online social media provides a channel for monitoring peoples social behaviors and their mental distress. Due to the restrictions imposed by COVID-19 people are increasingly using online social networks to express their feelings. Consequently, there is a significant amount of diverse user-generated social media content. However, COVID-19 pandemic has changed the way we live, study, socialize and recreate and this has affected our well-being and mental health problems. There are growing researches that leverage online social media analysis to detect and assess users mental status. In this paper, we survey the literature of social media analysis for mental disorders detection, with a special focus on the studies conducted in the context of COVID-19 during 2020-2021. Firstly, we classify the surveyed studies in terms of feature extraction types, varying from language usage patterns to aesthetic preferences and online behaviors. Secondly, we explore detection methods used for mental disorders detection including machine learning and deep learning detection methods. Finally, we discuss the challenges of mental disorder detection using social media data, including the privacy and ethical concerns, as well as the technical challenges of scaling and deploying such systems at large scales, and discuss the learnt lessons over the last few years.
114 - Swati Padhee 2020
Social media has quickly grown into an essential tool for people to communicate and express their needs during crisis events. Prior work in analyzing social media data for crisis management has focused primarily on automatically identifying actionable (or, informative) crisis-related messages. In this work, we show that recent advances in Deep Learning and Natural Language Processing outperform prior approaches for the task of classifying informativeness and encourage the field to adopt them for their research or even deployment. We also extend these methods to two sub-tasks of informativeness and find that the Deep Learning methods are effective here as well.
We address the diffusion of information about the COVID-19 with a massive data analysis on Twitter, Instagram, YouTube, Reddit and Gab. We analyze engagement and interest in the COVID-19 topic and provide a differential assessment on the evolution of the discourse on a global scale for each platform and their users. We fit information spreading with epidemic models characterizing the basic reproduction numbers $R_0$ for each social media platform. Moreover, we characterize information spreading from questionable sources, finding different volumes of misinformation in each platform. However, information from both reliable and questionable sources do not present different spreading patterns. Finally, we provide platform-dependent numerical estimates of rumors amplification.
During the COVID-19 pandemic, people started to discuss about pandemic-related topics on social media. On subreddit textit{r/COVID19positive}, a number of topics are discussed or being shared, including experience of those who got a positive test result, stories of those who presumably got infected, and questions asked regarding the pandemic and the disease. In this study, we try to understand, from a linguistic perspective, the nature of discussions on the subreddit. We found differences in linguistic characteristics (e.g. psychological, emotional and reasoning) across three different categories of topics. We also classified posts into the different categories using SOTA pre-trained language models. Such classification model can be used for pandemic-related research on social media.
COVID-19 pandemic has generated what public health officials called an infodemic of misinformation. As social distancing and stay-at-home orders came into effect, many turned to social media for socializing. This increase in social media usage has made it a prime vehicle for the spreading of misinformation. This paper presents a mechanism to detect COVID-19 health-related misinformation in social media following an interdisciplinary approach. Leveraging social psychology as a foundation and existing misinformation frameworks, we defined misinformation themes and associated keywords incorporated into the misinformation detection mechanism using applied machine learning techniques. Next, using the Twitter dataset, we explored the performance of the proposed methodology using multiple state-of-the-art machine learning classifiers. Our method shows promising results with at most 78% accuracy in classifying health-related misinformation versus true information using uni-gram-based NLP feature generations from tweets and the Decision Tree classifier. We also provide suggestions on alternatives for countering misinformation and ethical consideration for the study.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا