Do you want to publish a course? Click here

Homogeneous quandles arising from automorphisms of symmetric groups

200   0   0.0 ( 0 )
 Added by Akihiro Higashitani
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

Quandle is an algebraic system with one binary operation, but it is quite different from a group. Quandle has its origin in the knot theory and good relationships with the theory of symmetric spaces, so it is well-studied from points of view of both areas. In the present paper, we investigate a special kind of quandles, called generalized Alexander quandles $Q(G,psi)$, which is defined by a group $G$ together with its group automorphism $psi$. We develop the quandle invariants for generalized Alexander quandles. As a result, we prove that there is a one-to-one correspondence between generalized Alexander quandles arising from symmetric groups $Sf_n$ and the conjugacy classes of $Sf_n$ for $3 leq n leq 30$ with $n eq 6,15$, and the case $n=6$ is also discussed.



rate research

Read More

It is known that every finite group can be represented as the full group of automorphisms of a suitable compact dessin denfant. In this paper, we give a constructive and easy proof that the same holds for any countable group by considering non-compact dessins. Moreover, we show that any tame action of a countable group is so realizable.
191 - Tushar Kanta Naik , Neha Nanda , 2019
The twin group $T_n$ is a right angled Coxeter group generated by $n-1$ involutions and the pure twin group $PT_n$ is the kernel of the natural surjection from $T_n$ onto the symmetric group on $n$ symbols. In this paper, we investigate some structural aspects of these groups. We derive a formula for the number of conjugacy classes of involutions in $T_n$, which quite interestingly, is related to the well-known Fibonacci sequence. We also derive a recursive formula for the number of $z$-classes of involutions in $T_n$. We give a new proof of the structure of $Aut(T_n)$ for $n ge 3$, and show that $T_n$ is isomorphic to a subgroup of $Aut(PT_n)$ for $n geq 4$. Finally, we construct a representation of $T_n$ to $Aut(F_n)$ for $n ge 2$.
An odd Coxeter group $W$ is one which admits a Coxeter system $(W,S)$ for which all the exponents $m_{ij}$ are either odd or infinity. The paper investigates the family of odd Coxeter groups whose associated labeled graphs $mathcal{V}_{(W,S)}$ are trees. It is known that two Coxeter groups in this family are isomorphic if and only if they admit Coxeter systems having the same rank and the same multiset of finite exponents. In particular, each group in this family is isomorphic to a group that admits a Coxeter system whose associated labeled graph is a star shaped tree. We give the complete description of the automorphism group of this group, and derive a sufficient condition for the splitting of the automorphism group as a semi-direct product of the inner and the outer automorphism groups. As applications, we prove that Coxeter groups in this family satisfy the $R_infty$-property and are (co)-Hopfian. We compare structural properties, automorphism groups, $R_infty$-property and (co)-Hopfianity of a special odd Coxeter group whose only finite exponent is three with the braid group and the twin group.
Let $G$ be a finite group admitting a coprime automorphism $alpha$ of order $e$. Denote by $I_G(alpha)$ the set of commutators $g^{-1}g^alpha$, where $gin G$, and by $[G,alpha]$ the subgroup generated by $I_G(alpha)$. We study the impact of $I_G(alpha)$ on the structure of $[G,alpha]$. Suppose that each subgroup generated by a subset of $I_G(alpha)$ can be generated by at most $r$ elements. We show that the rank of $[G,alpha]$ is $(e,r)$-bounded. Along the way, we establish several results of independent interest. In particular, we prove that if every element of $I_G(alpha)$ has odd order, then $[G,alpha]$ has odd order too. Further, if every pair of elements from $I_G(alpha)$ generates a soluble, or nilpotent, subgroup, then $[G,alpha]$ is soluble, or respectively nilpotent.
Let $M$ be a compact surface without boundary, and $ngeq 2$. We analyse the quotient group $B_n(M)/Gamma_2(P_n(M))$ of the surface braid group $B_{n}(M)$ by the commutator subgroup $Gamma_2(P_n(M))$ of the pure braid group $P_{n}(M)$. If $M$ is different from the $2$-sphere $mathbb{S}^2$, we prove that $B_n(M)/Gamma_2(P_n(M))$ is isomorphic rho $P_n(M)/Gamma_2(P_n(M)) rtimes_{varphi} S_n$, and that $B_n(M)/Gamma_2(P_n(M))$ is a crystallographic group if and only if $M$ is orientable. If $M$ is orientable, we prove a number of results regarding the structure of $B_n(M)/Gamma_2(P_n(M))$. We characterise the finite-order elements of this group, and we determine the conjugacy classes of these elements. We also show that there is a single conjugacy class of finite subgroups of $B_n(M)/Gamma_2(P_n(M))$ isomorphic either to $S_n$ or to certain Frobenius groups. We prove that crystallographic groups whose image by the projection $B_n(M)/Gamma_2(P_n(M))to S_n$ is a Frobenius group are not Bieberbach groups. Finally, we construct a family of Bieberbach subgroups $tilde{G}_{n,g}$ of $B_n(M)/Gamma_2(P_n(M))$ of dimension $2ng$ and whose holonomy group is the finite cyclic group of order $n$, and if $mathcal{X}_{n,g}$ is a flat manifold whose fundamental group is $tilde{G}_{n,g}$, we prove that it is an orientable Kahler manifold that admits Anosov diffeomorphisms.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا