Do you want to publish a course? Click here

Coprime automorphisms of finite groups

102   0   0.0 ( 0 )
 Added by Cristina Acciarri
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Let $G$ be a finite group admitting a coprime automorphism $alpha$ of order $e$. Denote by $I_G(alpha)$ the set of commutators $g^{-1}g^alpha$, where $gin G$, and by $[G,alpha]$ the subgroup generated by $I_G(alpha)$. We study the impact of $I_G(alpha)$ on the structure of $[G,alpha]$. Suppose that each subgroup generated by a subset of $I_G(alpha)$ can be generated by at most $r$ elements. We show that the rank of $[G,alpha]$ is $(e,r)$-bounded. Along the way, we establish several results of independent interest. In particular, we prove that if every element of $I_G(alpha)$ has odd order, then $[G,alpha]$ has odd order too. Further, if every pair of elements from $I_G(alpha)$ generates a soluble, or nilpotent, subgroup, then $[G,alpha]$ is soluble, or respectively nilpotent.



rate research

Read More

The main result of the paper is the following theorem. Let $q$ be a prime and $A$ an elementary abelian group of order $q^3$. Suppose that $A$ acts coprimely on a profinite group $G$ and assume that $C_G(a)$ is locally nilpotent for each $ain A^{#}$. Then the group $G$ is locally nilpotent.
Let $q$ be a prime, $n$ a positive integer and $A$ an elementary abelian group of order $q^r$ with $rgeq2$ acting on a finite $q$-group $G$. The following results are proved. We show that if all elements in $gamma_{r-1}(C_G(a))$ are $n$-Engel in $G$ for any $ain A^#$, then $gamma_{r-1}(G)$ is $k$-Engel for some ${n,q,r}$-bounded number $k$, and if, for some integer $d$ such that $2^dleq r-1$, all elements in the $d$th derived group of $C_G(a)$ are $n$-Engel in $G$ for any $ain A^#$, then the $d$th derived group $G^{(d)}$ is $k$-Engel for some ${n,q,r}$-bounded number $k$. Assuming $rgeq 3$ we prove that if all elements in $gamma_{r-2}(C_G(a))$ are $n$-Engel in $C_G(a)$ for any $ain A^#$, then $gamma_{r-2}(G)$ is $k$-Engel for some ${n,q,r}$-bounded number $k$, and if, for some integer $d$ such that $2^dleq r-2$, all elements in the $d$th derived group of $C_G(a)$ are $n$-Engel in $C_G(a)$ for any $ain A^#,$ then the $d$th derived group $G^{(d)}$ is $k$-Engel for some ${n,q,r}$-bounded number $k$. Analogue (non-quantitative) results for profinite groups are also obtained.
We classify a large class of small groups of finite Morley rank: $N_circ^circ$-groups which are the infinite analogues of Thompsons $N$-groups. More precisely, we constrain the $2$-structure of groups of finite Morley rank containing a definable, normal, non-soluble, $N_circ^circ$-subgroup.
82 - Arne Van Antwerpen 2017
In this paper, we show that all Coleman automorphisms of a finite group with self-central minimal non-trivial characteristic subgroup are inner; therefore the normalizer property holds for these groups. Using our methods we show that the holomorph and wreath product of finite simple groups, among others, have no non-inner Coleman automorphisms. As a further application of our theorems, we provide partial answers to questions raised by M. Hertweck and W. Kimmerle. Furthermore, we characterize the Coleman automorphisms of extensions of a finite nilpotent group by a cyclic $p$-group. Lastly, we note that class-preserving automorphisms of 2-power order of some nilpotent-by-nilpotent groups are inner, extending a result by J. Hai and J. Ge.
The minimal base size $b(G)$ for a permutation group $G$, is a widely studied topic in the permutation group theory. Z. Halasi and K. Podoski proved that $b(G)leq 2$ for coprime linear groups. Motivated by this result and the probabilistic method used by T. C. Burness, M. W. Liebeck and A. Shalev, it was asked by L. Pyber that for coprime linear groups $Gleq GL(V)$, whether there exists a constant $c$ such that the probability of that a random $c$-tuple is a base for $G$ tends to 1 as $|V|toinfty$. While the answer to this question is negative in general, it is positive under the additional assumption that $G$ is even primitive as a linear group. In this paper, we show that almost all $11$-tuples are bases for coprime primitive linear groups.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا