No Arabic abstract
Thanks to advancements in diagnosis and treatment, prostate cancer patients have high long-term survival rates. Currently, an important goal is to preserve quality-of-life during and after treatment. The relationship between the radiation a patient receives and the subsequent side effects he experiences is complex and difficult to model or predict. Here, we use machine learning algorithms and statistical models to explore the connection between radiation treatment and post-treatment gastro-urinary function. Since only a limited number of patient datasets are currently available, we used image flipping and curvature-based interpolation methods to generate more data in order to leverage transfer learning. Using interpolated and augmented data, we trained a convolutional autoencoder network to obtain near-optimal starting points for the weights. A convolutional neural network then analyzed the relationship between patient-reported quality-of-life and radiation. We also used analysis of variance and logistic regression to explore organ sensitivity to radiation and develop dosage thresholds for each organ region. Our findings show no connection between the bladder and quality-of-life scores. However, we found a connection between radiation applied to posterior and anterior rectal regions to changes in quality-of-life. Finally, we estimated radiation therapy dosage thresholds for each organ. Our analysis connects machine learning methods with organ sensitivity, thus providing a framework for informing cancer patient care using patient reported quality-of-life metrics.
Background: Providing appropriate care for people suffering from COVID-19, the disease caused by the pandemic SARS-CoV-2 virus is a significant global challenge. Many individuals who become infected have pre-existing conditions that may interact with COVID-19 to increase symptom severity and mortality risk. COVID-19 patient comorbidities are likely to be informative about individual risk of severe illness and mortality. Accurately determining how comorbidities are associated with severe symptoms and mortality would thus greatly assist in COVID-19 care planning and provision. Methods: To assess the interaction of patient comorbidities with COVID-19 severity and mortality we performed a meta-analysis of the published global literature, and machine learning predictive analysis using an aggregated COVID-19 global dataset. Results: Our meta-analysis identified chronic obstructive pulmonary disease (COPD), cerebrovascular disease (CEVD), cardiovascular disease (CVD), type 2 diabetes, malignancy, and hypertension as most significantly associated with COVID-19 severity in the current published literature. Machine learning classification using novel aggregated cohort data similarly found COPD, CVD, CKD, type 2 diabetes, malignancy and hypertension, as well as asthma, as the most significant features for classifying those deceased versus those who survived COVID-19. While age and gender were the most significant predictor of mortality, in terms of symptom-comorbidity combinations, it was observed that Pneumonia-Hypertension, Pneumonia-Diabetes and Acute Respiratory Distress Syndrome (ARDS)-Hypertension showed the most significant effects on COVID-19 mortality. Conclusions: These results highlight patient cohorts most at risk of COVID-19 related severe morbidity and mortality which have implications for prioritization of hospital resources.
Radiomic models have been shown to outperform clinical data for outcome prediction in glioblastoma (GBM). However, clinical implementation is limited by lack of parameters standardization. We aimed to compare nine machine learning classifiers, with different optimization parameters, to predict overall survival (OS), isocitrate dehydrogenase (IDH) mutation, O-6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation, epidermal growth factor receptor (EGFR) VII amplification and Ki-67 expression in GBM patients, based on radiomic features from conventional and advanced MR. 156 adult patients with pathologic diagnosis of GBM were included. Three tumoral regions were analyzed: contrast-enhancing tumor, necrosis and non-enhancing tumor, selected by manual segmentation. Radiomic features were extracted with a custom version of Pyradiomics, and selected through Boruta algorithm. A Grid Search algorithm was applied when computing 4 times K-fold cross validation (K=10) to get the highest mean and lowest spread of accuracy. Once optimal parameters were identified, model performances were assessed in terms of Area Under The Curve-Receiver Operating Characteristics (AUC-ROC). Metaheuristic and ensemble classifiers showed the best performance across tasks. xGB obtained maximum accuracy for OS (74.5%), AB for IDH mutation (88%), MGMT methylation (71,7%), Ki-67 expression (86,6%), and EGFR amplification (81,6%). Best performing features shed light on possible correlations between MR and tumor histology.
As very large studies of complex neuroimaging phenotypes become more common, human quality assessment of MRI-derived data remains one of the last major bottlenecks. Few attempts have so far been made to address this issue with machine learning. In this work, we optimize predictive models of quality for meshes representing deep brain structure shapes. We use standard vertex-wise and global shape features computed homologously across 19 cohorts and over 7500 human-rated subjects, training kernelized Support Vector Machine and Gradient Boosted Decision Trees classifiers to detect meshes of failing quality. Our models generalize across datasets and diseases, reducing human workload by 30-70%, or equivalently hundreds of human rater hours for datasets of comparable size, with recall rates approaching inter-rater reliability.
Objectives: Most cancer data sources lack information on metastatic recurrence. Electronic medical records (EMRs) and population-based cancer registries contain complementary information on cancer treatment and outcomes, yet are rarely used synergistically. To enable detection of metastatic breast cancer (MBC), we applied a semi-supervised machine learning framework to linked EMR-California Cancer Registry (CCR) data. Materials and Methods: We studied 11,459 female patients treated at Stanford Health Care who received an incident breast cancer diagnosis from 2000-2014. The dataset consisted of structured data and unstructured free-text clinical notes from EMR, linked to CCR, a component of the Surveillance, Epidemiology and End Results (SEER) database. We extracted information on metastatic disease from patient notes to infer a class label and then trained a regularized logistic regression model for MBC classification. We evaluated model performance on a gold standard set of set of 146 patients. Results: There are 495 patients with de novo stage IV MBC, 1,374 patients initially diagnosed with Stage 0-III disease had recurrent MBC, and 9,590 had no evidence of metastatis. The median follow-up time is 96.3 months (mean 97.8, standard deviation 46.7). The best-performing model incorporated both EMR and CCR features. The area under the receiver-operating characteristic curve=0.925 [95% confidence interval: 0.880-0.969], sensitivity=0.861, specificity=0.878 and overall accuracy=0.870. Discussion and Conclusion: A framework for MBC case detection combining EMR and CCR data achieved good sensitivity, specificity and discrimination without requiring expert-labeled examples. This approach enables population-based research on how patients die from cancer and may identify novel predictors of cancer recurrence.
The hypothalamic-pituitary-adrenal (HPA) axis is a neuroendocrine system that regulates numerous physiological processes. Disruptions in the activity of the HPA axis are correlated with many stress-related diseases such as post-traumatic stress disorder (PTSD) and major depressive disorder. In this paper, we characterize normal and diseased states of the HPA axis as basins of attraction of a dynamical system describing the inhibition of peptide hormones such as corticotropin-releasing hormone (CRH) and adrenocorticotropic hormone (ACTH) by circulating glucocorticoids such as cortisol (CORT). In addition to including key physiological features such as ultradian oscillations in cortisol levels and self-upregulation of CRH neuron activity, our model distinguishes the relatively slow process of cortisol-mediated CRH biosynthesis from rapid trans-synaptic effects that regulate the CRH secretion process. Crucially, we find that the slow regulation mechanism mediates external stress-driven transitions between the stable states in novel, intensity, duration, and timing-dependent ways. These results indicate that the timing of traumatic events may be an important factor in determining if and how patients will exhibit hallmarks of stress disorders. Our model also suggests a mechanism whereby exposure therapy of stress disorders such as PTSD may act to normalize downstream dysregulation of the HPA axis.