Do you want to publish a course? Click here

Alfven-wave driven magnetic rotator winds from low-mass stars I: rotation dependences of magnetic braking and mass-loss rate

82   0   0.0 ( 0 )
 Added by Munehito Shoda
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Observations of stellar rotation show that low-mass stars lose angular momentum during the main sequence. We simulate the winds of Sun-like stars with a range of rotation rates, covering the fast and slow magneto-rotator regimes, including the transition between the two. We generalize an Alfven-wave driven solar wind model that builds on previous works by including the magneto-centrifugal force explicitly. In this model, the surface-averaged open magnetic flux is assumed to scale as $B_ast f^{rm open}_ast propto {rm Ro}^{-1.2}$, where $f^{rm open}_ast$ and ${rm Ro}$ are the surface open-flux filling factor and Rossby number, respectively. We find that, 1. the angular momentum loss rate (torque) of the wind is described as $tau_w approx 2.59 times 10^{30} {rm erg} left( Omega_ast / Omega_odot right)^{2.82}$, yielding a spin-down law $Omega_ast propto t^{-0.55}$. 2. the mass-loss rate saturates at $dot{M}_w sim 3.4 times 10^{-14} M_odot {rm yr^{-1}}$, due to the strong reflection and dissipation of Alfven waves in the chromosphere. This indicates that the chromosphere has a strong impact in connecting the stellar surface and stellar wind. Meanwhile, the wind ram pressure scales as $P_w propto Omega_ast^{0.57}$, which is able to explain the lower-envelope of the observed stellar winds by Wood et al. 3. the location of the Alfven radius is shown to scale in a way that is consistent with 1D analytic theory. Additionally, the precise scaling of the Alfven radius matches previous works which used thermally-driven winds. Our results suggest that the Alfven-wave driven magnetic rotator wind plays a dominant role in the stellar spin-down during the main-sequence.



rate research

Read More

129 - Bo Zhao 2012
The majority of stars reside in multiple systems, especially binaries. The formation and early evolution of binaries is a longstanding problem in star formation that is not fully understood. In particular, how the magnetic field observed in star-forming cores shapes the binary characteristics remains relatively unexplored. We demonstrate numerically, using the ENZO-MHD code, that a magnetic field of the observed strength can drastically change two of the basic quantities of a binary system: the orbital separation and mass ratio of the two components. Our calculations focus on the protostellar mass accretion phase, after a pair of stellar seeds have already formed. We find that, in dense cores magnetized to a realistic level, the angular momentum of the gas accreted by the protobinary is greatly reduced by magnetic braking. Accretion of strongly braked material shrinks the protobinary separation by a large factor compared to the non-magnetic case. The magnetic braking also changes the evolution of the mass ratio of unequal-mass protobinaries by producing gas of low specific angular momentum that accretes preferentially onto the primary rather than the secondary. This is in contrast with the preferential mass accretion onto the secondary previously found for protobinaries accreting from an unmagnetized envelope, which tends to drive the mass ratio towards unity. In addition, the magnetic field greatly modifies the morphology and dynamics of the protobinary accretion flow. It suppresses the circumstellar and circumbinary disks that feed the protobinary in the non-magnetic case; the binary is fed instead by a fast collapsing pseudodisk whose rotation is strongly braked. The magnetic braking-driven inward migration of binaries from their birth locations may be constrained by high-resolution observations of the orbital distribution of deeply embedded protobinaries, especially with ALMA.
Surface magnetic fields have a strong impact on stellar mass loss and rotation and, as a consequence, on the evolution of massive stars. In this work we study the influence of an evolving dipolar surface fossil magnetic field with an initial field strength of 4 kG on the characteristics of 15 M$_{odot}$ solar metallicity models using the Geneva stellar evolution code. Non-rotating and rotating models considering two different scenarios for internal angular momentum transport are computed, including magnetic field evolution, mass-loss quenching, and magnetic braking. Magnetic field evolution results in weakening the initially strong magnetic field, however, in our models an observable magnetic field is still maintained as the star evolves towards the red supergiant phase. At the given initial mass of the models, mass-loss quenching is modest. Magnetic braking greatly enhances chemical element mixing if radial differential rotation is allowed for, on the other hand, the inclusion of surface magnetic fields yields a lower surface enrichment in the case of near solid-body rotation. Models including surface magnetic fields show notably different trends on the Hunter diagram (plotting nitrogen abundance vs $v sin i$) compared to those that do not. The magnetic models agree qualitatively with the anomalous `Group 2 stars, showing slow surface rotation and high surface nitrogen enhancement on the main sequence.
Line-driven stellar winds from massive (OB) stars are subject to a strong line-deshadowing instability. Recently, spectropolarimetric surveys have collected ample evidence that a subset of Galactic massive stars hosts strong surface magnetic fields. We investigate here the propagation and stability of magneto-radiative waves in such a magnetised, line-driven wind. Our analytic, linear stability analysis includes line-scattering from the stellar radiation, and accounts for both radial and non-radial perturbations. We establish a bridging law for arbitrary perturbation wavelength after which we analyse separately the long- and short-wavelength limits. While long-wavelength radiative and magnetic waves are found to be completely decoupled, a key result is that short-wavelength, radially propagating Alfven waves couple to the scattered radiation field and are strongly damped due to the line-drag effect. This damping of magnetic waves in a scattering-line-driven flow could have important effects on regulating the non-linear wind dynamics, and so might also have strong influence on observational diagnostics of the wind structure and clumping of magnetic line-driven winds.
138 - A. A. Vidotto 2010
The rapid rotation (P=0.44 d) of the M dwarf V374Peg (M4) along with its intense magnetic field point toward magneto-centrifugal acceleration of a coronal wind. In this work, we investigate the structure of the wind of V374Peg by means of 3D magnetohydrodynamical (MHD) numerical simulations. For the first time, an observationally derived surface magnetic field map is implemented in MHD models of stellar winds for a low mass star. We show that the wind of V374Peg deviates greatly from a low-velocity, low-mass-loss rate solar-type wind. We find general scaling relations for the terminal velocities, mass-loss rates, and spin-down times of highly magnetized M dwarfs. In particular, for V374Peg, our models show that terminal velocities across a range of stellar latitudes reach ~(1500-2300) n_{12}^{-1/2} km/s, where n_{12} is the coronal wind base density in units of 10^{12} cm^{-3}, while the mass-loss rates are about 4 x 10^{-10} n_{12}^{1/2} Msun/yr. We also evaluate the angular-momentum loss of V374Peg, which presents a rotational braking timescale ~28 n_{12}^{-1/2} Myr. Compared to observationally derived values from period distributions of stars in open clusters, this suggests that V374Peg may have low coronal base densities (< 10^{11} cm^{-3}). We show that the wind ram pressure of V374Peg is about 5 orders of magnitude larger than for the solar wind. Nevertheless, a small planetary magnetic field intensity (~ 0.1G) is able to shield a planet orbiting at 1 AU against the erosive effects of the stellar wind. However, planets orbiting inside the habitable zone of V374Peg, where the wind ram pressure is higher, might be facing a more significant atmospheric erosion. In that case, higher planetary magnetic fields of, at least, about half the magnetic field intensity of Jupiter, are required to protect the planets atmosphere.
188 - Sean P. Matt 2012
We use two-dimensional axisymmetric magnetohydrodynamic simulations to compute steady-state solutions for solar-like stellar winds from rotating stars with dipolar magnetic fields. Our parameter study includes 50 simulations covering a wide range of relative magnetic field strengths and rotation rates, extending from the slow- and approaching the fast-magnetic-rotator regimes. Using the simulations to compute the angular momentum loss, we derive a semi-analytic formulation for the external torque on the star that fits all of the simulations to a precision of a few percents. This formula provides a simple method for computing the magnetic braking of sun-like stars due to magnetized stellar winds, which properly includes the dependence on the strength of the magnetic field, mass loss rate, stellar radius, suface gravity, and spin rate and which is valid for both slow and fast rotators.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا