Do you want to publish a course? Click here

Distance-2 Coloring in the CONGEST Model

133   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We give efficient randomized and deterministic distributed algorithms for computing a distance-$2$ vertex coloring of a graph $G$ in the CONGEST model. In particular, if $Delta$ is the maximum degree of $G$, we show that there is a randomized CONGEST model algorithm to compute a distance-$2$ coloring of $G$ with $Delta^2+1$ colors in $O(logDeltacdotlog n)$ rounds. Further if the number of colors is slightly increased to $(1+epsilon)Delta^2$ for some $epsilon>1/{rm polylog}(n)$, we show that it is even possible to compute a distance-$2$ coloring deterministically in polylog$(n)$ time in the CONGEST model. Finally, we give a $O(Delta^2 + log^* n)$-round deterministic CONGEST algorithm to compute distance-$2$ coloring with $Delta^2+1$ colors.



rate research

Read More

We study the maximum cardinality matching problem in a standard distributed setting, where the nodes $V$ of a given $n$-node network graph $G=(V,E)$ communicate over the edges $E$ in synchronous rounds. More specifically, we consider the distributed CONGEST model, where in each round, each node of $G$ can send an $O(log n)$-bit message to each of its neighbors. We show that for every graph $G$ and a matching $M$ of $G$, there is a randomized CONGEST algorithm to verify $M$ being a maximum matching of $G$ in time $O(|M|)$ and disprove it in time $O(D + ell)$, where $D$ is the diameter of $G$ and $ell$ is the length of a shortest augmenting path. We hope that our algorithm constitutes a significant step towards developing a CONGEST algorithm to compute a maximum matching in time $tilde{O}(s^*)$, where $s^*$ is the size of a maximum matching.
We present simple deterministic algorithms for subgraph finding and enumeration in the broadcast CONGEST model of distributed computation: -- For any constant $k$, detecting $k$-paths and trees on $k$ nodes can be done in $O(1)$ rounds. -- For any constant $k$, detecting $k$-cycles and pseudotrees on $k$ nodes can be done in $O(n)$ rounds. -- On $d$-degenerate graphs, cliques and $4$-cycles can be enumerated in $O(d + log n)$ rounds, and $5$-cycles in $O(d^2 + log n)$ rounds. In many cases, these bounds are tight up to logarithmic factors. Moreover, we show that the algorithms for $d$-degenerate graphs can be improved to optimal complexity $O(d/log n)$ and $O(d^2/log n)$, respectively, in the supported CONGEST model, which can be seen as an intermediate model between CONGEST and the congested clique.
Distributed vertex coloring is one of the classic problems and probably also the most widely studied problems in the area of distributed graph algorithms. We present a new randomized distributed vertex coloring algorithm for the standard CONGEST model, where the network is modeled as an $n$-node graph $G$, and where the nodes of $G$ operate in synchronous communication rounds in which they can exchange $O(log n)$-bit messages over all the edges of $G$. For graphs with maximum degree $Delta$, we show that the $(Delta+1)$-list coloring problem (and therefore also the standard $(Delta+1)$-coloring problem) can be solved in $O(log^5log n)$ rounds. Previously such a result was only known for the significantly more powerful LOCAL model, where in each round, neighboring nodes can exchange messages of arbitrary size. The best previous $(Delta+1)$-coloring algorithm in the CONGEST model had a running time of $O(logDelta + log^6log n)$ rounds. As a function of $n$ alone, the best previous algorithm therefore had a round complexity of $O(log n)$, which is a bound that can also be achieved by a na{i}ve folklore algorithm. For large maximum degree $Delta$, our algorithm hence is an exponential improvement over the previous state of the art.
In this paper we study fractional coloring from the angle of distributed computing. Fractional coloring is the linear relaxation of the classical notion of coloring, and has many applications, in particular in scheduling. It was proved by Hasemann, Hirvonen, Rybicki and Suomela (2016) that for every real $alpha>1$ and integer $Delta$, a fractional coloring of total weight at most $alpha(Delta+1)$ can be obtained deterministically in a single round in graphs of maximum degree $Delta$, in the LOCAL model of computation. However, a major issue of this result is that the output of each vertex has unbounded size. Here we prove that even if we impose the more realistic assumption that the output of each vertex has constant size, we can find fractional colorings of total weight arbitrarily close to known tight bounds for the fractional chromatic number in several cases of interest. More precisely, we show that for any fixed $epsilon > 0$ and $Delta$, a fractional coloring of total weight at most $Delta+epsilon$ can be found in $O(log^*n)$ rounds in graphs of maximum degree $Delta$ with no $K_{Delta+1}$, while finding a fractional coloring of total weight at most $Delta$ in this case requires $Omega(log log n)$ rounds for randomized algorithms and $Omega( log n)$ rounds for deterministic algorithms. We also show how to obtain fractional colorings of total weight at most $2+epsilon$ in grids of any fixed dimension, for any $epsilon>0$, in $O(log^*n)$ rounds. Finally, we prove that in sparse graphs of large girth from any proper minor-closed family we can find a fractional coloring of total weight at most $2+epsilon$, for any $epsilon>0$, in $O(log n)$ rounds.
The problem of coloring the edges of an $n$-node graph of maximum degree $Delta$ with $2Delta - 1$ colors is one of the key symmetry breaking problems in the area of distributed graph algorithms. While there has been a lot of progress towards the understanding of this problem, the dependency of the running time on $Delta$ has been a long-standing open question. Very recently, Kuhn [SODA 20] showed that the problem can be solved in time $2^{O(sqrt{logDelta})}+O(log^* n)$. In this paper, we study the edge coloring problem in the distributed LOCAL model. We show that the $(mathit{degree}+1)$-list edge coloring problem, and thus also the $(2Delta-1)$-edge coloring problem, can be solved deterministically in time $log^{O(loglogDelta)}Delta + O(log^* n)$. This is a significant improvement over the result of Kuhn [SODA 20].
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا