Do you want to publish a course? Click here

Distributed Edge Coloring in Time Quasi-Polylogarithmic in Delta

62   0   0.0 ( 0 )
 Added by Dennis Olivetti
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The problem of coloring the edges of an $n$-node graph of maximum degree $Delta$ with $2Delta - 1$ colors is one of the key symmetry breaking problems in the area of distributed graph algorithms. While there has been a lot of progress towards the understanding of this problem, the dependency of the running time on $Delta$ has been a long-standing open question. Very recently, Kuhn [SODA 20] showed that the problem can be solved in time $2^{O(sqrt{logDelta})}+O(log^* n)$. In this paper, we study the edge coloring problem in the distributed LOCAL model. We show that the $(mathit{degree}+1)$-list edge coloring problem, and thus also the $(2Delta-1)$-edge coloring problem, can be solved deterministically in time $log^{O(loglogDelta)}Delta + O(log^* n)$. This is a significant improvement over the result of Kuhn [SODA 20].



rate research

Read More

In this paper we study fractional coloring from the angle of distributed computing. Fractional coloring is the linear relaxation of the classical notion of coloring, and has many applications, in particular in scheduling. It was proved by Hasemann, Hirvonen, Rybicki and Suomela (2016) that for every real $alpha>1$ and integer $Delta$, a fractional coloring of total weight at most $alpha(Delta+1)$ can be obtained deterministically in a single round in graphs of maximum degree $Delta$, in the LOCAL model of computation. However, a major issue of this result is that the output of each vertex has unbounded size. Here we prove that even if we impose the more realistic assumption that the output of each vertex has constant size, we can find fractional colorings of total weight arbitrarily close to known tight bounds for the fractional chromatic number in several cases of interest. More precisely, we show that for any fixed $epsilon > 0$ and $Delta$, a fractional coloring of total weight at most $Delta+epsilon$ can be found in $O(log^*n)$ rounds in graphs of maximum degree $Delta$ with no $K_{Delta+1}$, while finding a fractional coloring of total weight at most $Delta$ in this case requires $Omega(log log n)$ rounds for randomized algorithms and $Omega( log n)$ rounds for deterministic algorithms. We also show how to obtain fractional colorings of total weight at most $2+epsilon$ in grids of any fixed dimension, for any $epsilon>0$, in $O(log^*n)$ rounds. Finally, we prove that in sparse graphs of large girth from any proper minor-closed family we can find a fractional coloring of total weight at most $2+epsilon$, for any $epsilon>0$, in $O(log n)$ rounds.
We show that the $(degree+1)$-list coloring problem can be solved deterministically in $O(D cdot log n cdotlog^2Delta)$ rounds in the CONGEST model, where $D$ is the diameter of the graph, $n$ the number of nodes, and $Delta$ the maximum degree. Using the recent polylogarithmic-time deterministic network decomposition algorithm by Rozhov{n} and Ghaffari [STOC 2020], this implies the first efficient (i.e., $polylog n$-time) deterministic CONGEST algorithm for the $(Delta+1)$-coloring and the $(mathit{degree}+1)$-list coloring problem. Previously the best known algorithm required $2^{O(sqrt{log n})}$ rounds and was not based on network decompositions. Our techniques also lead to deterministic $(mathit{degree}+1)$-list coloring algorithms for the congested clique and the massively parallel computation (MPC) model. For the congested clique, we obtain an algorithm with time complexity $O(logDeltacdotloglogDelta)$, for the MPC model, we obtain algorithms with round complexity $O(log^2Delta)$ for the linear-memory regime and $O(log^2Delta + log n)$ for the sublinear memory regime.
We present a randomized distributed algorithm that computes a $Delta$-coloring in any non-complete graph with maximum degree $Delta geq 4$ in $O(log Delta) + 2^{O(sqrt{loglog n})}$ rounds, as well as a randomized algorithm that computes a $Delta$-coloring in $O((log log n)^2)$ rounds when $Delta in [3, O(1)]$. Both these algorithms improve on an $O(log^3 n/log Delta)$-round algorithm of Panconesi and Srinivasan~[STOC1993], which has remained the state of the art for the past 25 years. Moreover, the latter algorithm gets (exponentially) closer to an $Omega(loglog n)$ round lower bound of Brandt et al.~[STOC16].
We give efficient randomized and deterministic distributed algorithms for computing a distance-$2$ vertex coloring of a graph $G$ in the CONGEST model. In particular, if $Delta$ is the maximum degree of $G$, we show that there is a randomized CONGEST model algorithm to compute a distance-$2$ coloring of $G$ with $Delta^2+1$ colors in $O(logDeltacdotlog n)$ rounds. Further if the number of colors is slightly increased to $(1+epsilon)Delta^2$ for some $epsilon>1/{rm polylog}(n)$, we show that it is even possible to compute a distance-$2$ coloring deterministically in polylog$(n)$ time in the CONGEST model. Finally, we give a $O(Delta^2 + log^* n)$-round deterministic CONGEST algorithm to compute distance-$2$ coloring with $Delta^2+1$ colors.
We study the maximum cardinality matching problem in a standard distributed setting, where the nodes $V$ of a given $n$-node network graph $G=(V,E)$ communicate over the edges $E$ in synchronous rounds. More specifically, we consider the distributed CONGEST model, where in each round, each node of $G$ can send an $O(log n)$-bit message to each of its neighbors. We show that for every graph $G$ and a matching $M$ of $G$, there is a randomized CONGEST algorithm to verify $M$ being a maximum matching of $G$ in time $O(|M|)$ and disprove it in time $O(D + ell)$, where $D$ is the diameter of $G$ and $ell$ is the length of a shortest augmenting path. We hope that our algorithm constitutes a significant step towards developing a CONGEST algorithm to compute a maximum matching in time $tilde{O}(s^*)$, where $s^*$ is the size of a maximum matching.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا