No Arabic abstract
Recent advances in Deep Neural Networks (DNN) and Edge Computing have made it possible to automatically analyze streams of videos from home/security cameras over hierarchical clusters that include edge devices, close to the video source, as well as remote cloud compute resources. However, preserving the privacy and confidentiality of users sensitive data as it passes through different devices remains a concern to most users. Private user data is subject to attacks by malicious attackers or misuse by internal administrators who may use the data in activities that are not explicitly approved by the user. To address this challenge, we present Serdab, a distributed orchestration framework for deploying deep neural network computation across multiple secure enclaves (e.g., Intel SGX). Secure enclaves provide a guarantee on the privacy of the data/code deployed inside it. However, their limited hardware resources make them inefficient when solely running an entire deep neural network. To bridge this gap, Serdab presents a DNN partitioning strategy to distribute the layers of the neural network across multiple enclave devices or across an enclave device and other hardware accelerators. Our partitioning strategy achieves up to 4.7x speedup compared to executing the entire neural network in one enclave.
The emerging Internet of Things (IoT) is facing significant scalability and security challenges. On the one hand, IoT devices are weak and need external assistance. Edge computing provides a promising direction addressing the deficiency of centralized cloud computing in scaling massive number of devices. On the other hand, IoT devices are also relatively vulnerable facing malicious hackers due to resource constraints. The emerging blockchain and smart contracts technologies bring a series of new security features for IoT and edge computing. In this paper, to address the challenges, we design and prototype an edge-IoT framework named EdgeChain based on blockchain and smart contracts. The core idea is to integrate a permissioned blockchain and the internal currency or coin system to link the edge cloud resource pool with each IoT device account and resource usage, and hence behavior of the IoT devices. EdgeChain uses a credit-based resource management system to control how much resource IoT devices can obtain from edge servers, based on pre-defined rules on priority, application types and past behaviors. Smart contracts are used to enforce the rules and policies to regulate the IoT device behavior in a non-deniable and automated manner. All the IoT activities and transactions are recorded into blockchain for secure data logging and auditing. We implement an EdgeChain prototype and conduct extensive experiments to evaluate the ideas. The results show that while gaining the security benefits of blockchain and smart contracts, the cost of integrating them into EdgeChain is within a reasonable and acceptable range.
Several recently devised machine learning (ML) algorithms have shown improved accuracy for various predictive problems. Model searches, which explore to find an optimal ML algorithm and hyperparameter values for the target problem, play a critical role in such improvements. During a model search, data scientists typically use multiple ML implementations to construct several predictive models; however, it takes significant time and effort to employ multiple ML implementations due to the need to learn how to use them, prepare input data in several different formats, and compare their outputs. Our proposed framework addresses these issues by providing simple and unified coding method. It has been designed with the following two attractive features: i) new machine learning implementations can be added easily via common interfaces between the framework and ML implementations and ii) it can be scaled to handle large model configuration search spaces via profile-based scheduling. The results of our evaluation indicate that, with our framework, implementers need only write 55-144 lines of code to add a new ML implementation. They also show that ours was the fastest framework for the HIGGS dataset, and the second-fastest for the SECOM dataset.
The modern deep learning method based on backpropagation has surged in popularity and has been used in multiple domains and application areas. At the same time, there are other -- less-known -- machine learning algorithms with a mature and solid theoretical foundation whose performance remains unexplored. One such example is the brain-like Bayesian Confidence Propagation Neural Network (BCPNN). In this paper, we introduce StreamBrain -- a framework that allows neural networks based on BCPNN to be practically deployed in High-Performance Computing systems. StreamBrain is a domain-specific language (DSL), similar in concept to existing machine learning (ML) frameworks, and supports backends for CPUs, GPUs, and even FPGAs. We empirically demonstrate that StreamBrain can train the well-known ML benchmark dataset MNIST within seconds, and we are the first to demonstrate BCPNN on STL-10 size networks. We also show how StreamBrain can be used to train with custom floating-point formats and illustrate the impact of using different bfloat variations on BCPNN using FPGAs.
In this work we study biological neural networks from an algorithmic perspective, focusing on understanding tradeoffs between computation time and network complexity. Our goal is to abstract real neural networks in a way that, while not capturing all interesting features, preserves high-level behavior and allows us to make biologically relevant conclusions. Towards this goal, we consider the implementation of algorithmic primitives in a simple yet biologically plausible model of $stochastic spiking neural networks$. In particular, we show how the stochastic behavior of neurons in this model can be leveraged to solve a basic $symmetry-breaking task$ in which we are given neurons with identical firing rates and want to select a distinguished one. In computational neuroscience, this is known as the winner-take-all (WTA) problem, and it is believed to serve as a basic building block in many tasks, e.g., learning, pattern recognition, and clustering. We provide efficient constructions of WTA circuits in our stochastic spiking neural network model, as well as lower bounds in terms of the number of auxiliary neurons required to drive convergence to WTA in a given number of steps. These lower bounds demonstrate that our constructions are near-optimal in some cases. This work covers and gives more in-depth proofs of a subset of results originally published in [LMP17a]. It is adapted from the last chapter of C. Muscos Ph.D. thesis [Mus18].
With the rapid development of wireless sensor networks, smart devices, and traditional information and communication technologies, there is tremendous growth in the use of Internet of Things (IoT) applications and services in our everyday life. IoT systems deal with high volumes of data. This data can be particularly sensitive, as it may include health, financial, location, and other highly personal information. Fine-grained security management in IoT demands effective access control. Several proposals discuss access control for the IoT, however, a limited focus is given to the emerging blockchain-based solutions for IoT access control. In this paper, we review the recent trends and critical needs for blockchain-based solutions for IoT access control. We identify several important aspects of blockchain, including decentralised control, secure storage and sharing information in a trustless manner, for IoT access control including their benefits and limitations. Finally, we note some future research directions on how to converge blockchain in IoT access control efficiently and effectively.