Do you want to publish a course? Click here

EdgeChain: An Edge-IoT Framework and Prototype Based on Blockchain and Smart Contracts

102   0   0.0 ( 0 )
 Added by Jianli Pan
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

The emerging Internet of Things (IoT) is facing significant scalability and security challenges. On the one hand, IoT devices are weak and need external assistance. Edge computing provides a promising direction addressing the deficiency of centralized cloud computing in scaling massive number of devices. On the other hand, IoT devices are also relatively vulnerable facing malicious hackers due to resource constraints. The emerging blockchain and smart contracts technologies bring a series of new security features for IoT and edge computing. In this paper, to address the challenges, we design and prototype an edge-IoT framework named EdgeChain based on blockchain and smart contracts. The core idea is to integrate a permissioned blockchain and the internal currency or coin system to link the edge cloud resource pool with each IoT device account and resource usage, and hence behavior of the IoT devices. EdgeChain uses a credit-based resource management system to control how much resource IoT devices can obtain from edge servers, based on pre-defined rules on priority, application types and past behaviors. Smart contracts are used to enforce the rules and policies to regulate the IoT device behavior in a non-deniable and automated manner. All the IoT activities and transactions are recorded into blockchain for secure data logging and auditing. We implement an EdgeChain prototype and conduct extensive experiments to evaluate the ideas. The results show that while gaining the security benefits of blockchain and smart contracts, the cost of integrating them into EdgeChain is within a reasonable and acceptable range.



rate research

Read More

In this paper we discuss how conventional business contracts can be converted into smart contracts---their electronic equivalents that can be used to systematically monitor and enforce contractual rights, obligations and prohibitions at run time. We explain that emerging blockchain technology is certainly a promising platform for implementing smart contracts but argue that there is a large class of applications, where blockchain is inadequate due to performance, scalability, and consistency requirements, and also due to language expressiveness and cost issues that are hard to solve. We explain that in some situations a centralised approach that does not rely on blockchain is a better alternative due to its simplicity, scalability, and performance. We suggest that in applications where decentralisation and transparency are essential, developers can advantageously combine the two approaches into hybrid solutions where some operations are enforced by enforcers deployed on--blockchains and the rest by enforcers deployed on trusted third parties.
Device failure detection is one of most essential problems in industrial internet of things (IIoT). However, in conventional IIoT device failure detection, client devices need to upload raw data to the central server for model training, which might lead to disclosure of sensitive business data. Therefore, in this paper, to ensure client data privacy, we propose a blockchain-based federated learning approach for device failure detection in IIoT. First, we present a platform architecture of blockchain-based federated learning systems for failure detection in IIoT, which enables verifiable integrity of client data. In the architecture, each client periodically creates a Merkle tree in which each leaf node represents a client data record, and stores the tree root on a blockchain. Further, to address the data heterogeneity issue in IIoT failure detection, we propose a novel centroid distance weighted federated averaging (CDW_FedAvg) algorithm taking into account the distance between positive class and negative class of each client dataset. In addition, to motivate clients to participate in federated learning, a smart contact based incentive mechanism is designed depending on the size and the centroid distance of client data used in local model training. A prototype of the proposed architecture is implemented with our industry partner, and evaluated in terms of feasibility, accuracy and performance. The results show that the approach is feasible, and has satisfactory accuracy and performance.
The growing adoption of smart contracts on blockchains poses new security risks that can lead to significant monetary loss, while existing approaches either provide no (or partial) security guarantees for smart contracts or require huge proof effort. To address this challenge, we present SciviK, a versatile framework for specifying and verifying industrial-grade smart contracts. SciviKs versatile approach extends previous efforts with three key contributions: (i) an expressive annotation system enabling built-in directives for vulnerability pattern checking, neural-based loop invariant inference, and the verification of rich properties of real-world smart contracts (ii) a fine-grained model for the Ethereum Virtual Machine (EVM) that provides low-level execution semantics, (iii) an IR-level verification framework integrating both SMT solvers and the Coq proof assistant. We use SciviK to specify and verify security properties for 12 benchmark contracts and a real-world Decentralized Finance (DeFi) smart contract. Among all 158 specified security properties (in six types), 151 properties can be automatically verified within 2 seconds, five properties can be automatically verified after moderate modifications, and two properties are manually proved with around 200 lines of Coq code.
228 - Liya Xu , Mingzhu Ge , Weili Wu 2020
Mining in the blockchain requires high computing power to solve the hash puzzle for example proof-of-work puzzle. It takes high cost to achieve the calculation of this problem in devices of IOT, especially the mobile devices of IOT. It consequently restricts the application of blockchain in mobile environment. However, edge computing can be utilized to solve the problem for insufficient computing power of mobile devices in IOT. Edge servers can recruit many mobile devices to contribute computing power together to mining and share the reward of mining with these recruited mobile devices. In this paper, we propose an incentivizing mechanism based on edge computing for mobile blockchain. We design a two-stage Stackelberg Game to jointly optimize the reward of edge servers and recruited mobile devices. The edge server as the leader sets the expected fee for the recruited mobile devices in Stage I. The mobile device as a follower provides its computing power to mine according to the expected fee in Stage. It proves that this game can obtain a uniqueness Nash Equilibrium solution under the same or different expected fee. In the simulation experiment, we obtain a result curve of the profit for the edge server with the different ratio between the computing power from the edge server and mobile devices. In addition, the proposed scheme has been compared with the MDG scheme for the profit of the edge server. The experimental results show that the profit of the proposed scheme is more than that of the MDG scheme under the same total computing power.
The main problem faced by smart contract platforms is the amount of time and computational power required to reach consensus. In a classical blockchain model, each operation is in fact performed by each node, both to update the status and to validate the results of the calculations performed by others. In this short survey we sketch some state-of-the-art approaches to obtain an efficient and scalable computation of smart contracts. Particular emphasis is given to sharding, a promising method that allows parallelization and therefore a more efficient management of the computational resources of the network.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا