Do you want to publish a course? Click here

Interpretable Learning-to-Rank with Generalized Additive Models

186   0   0.0 ( 0 )
 Added by Honglei Zhuang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Interpretability of learning-to-rank models is a crucial yet relatively under-examined research area. Recent progress on interpretable ranking models largely focuses on generating post-hoc explanations for existing black-box ranking models, whereas the alternative option of building an intrinsically interpretable ranking model with transparent and self-explainable structure remains unexplored. Developing fully-understandable ranking models is necessary in some scenarios (e.g., due to legal or policy constraints) where post-hoc methods cannot provide sufficiently accurate explanations. In this paper, we lay the groundwork for intrinsically interpretable learning-to-rank by introducing generalized additive models (GAMs) into ranking tasks. Generalized additive models (GAMs) are intrinsically interpretable machine learning models and have been extensively studied on regression and classification tasks. We study how to extend GAMs into ranking models which can handle both item-level and list-level features and propose a novel formulation of ranking GAMs. To instantiate ranking GAMs, we employ neural networks instead of traditional splines or regression trees. We also show that our neural ranking GAMs can be distilled into a set of simple and compact piece-wise linear functions that are much more efficient to evaluate with little accuracy loss. We conduct experiments on three data sets and show that our proposed neural ranking GAMs can achieve significantly better performance than other traditional GAM baselines while maintaining similar interpretability.



rate research

Read More

Deep neural networks (DNNs) are powerful black-box predictors that have achieved impressive performance on a wide variety of tasks. However, their accuracy comes at the cost of intelligibility: it is usually unclear how they make their decisions. This hinders their applicability to high stakes decision-making domains such as healthcare. We propose Neural Additive Models (NAMs) which combine some of the expressivity of DNNs with the inherent intelligibility of generalized additive models. NAMs learn a linear combination of neural networks that each attend to a single input feature. These networks are trained jointly and can learn arbitrarily complex relationships between their input feature and the output. Our experiments on regression and classification datasets show that NAMs are more accurate than widely used intelligible models such as logistic regression and shallow decision trees. They perform similarly to existing state-of-the-art generalized additive models in accuracy, but can be more easily applied to real-world problems.
Learning to rank is an important problem in machine learning and recommender systems. In a recommender system, a user is typically recommended a list of items. Since the user is unlikely to examine the entire recommended list, partial feedback arises naturally. At the same time, diverse recommendations are important because it is challenging to model all tastes of the user in practice. In this paper, we propose the first algorithm for online learning to rank diverse items from partial-click feedback. We assume that the user examines the list of recommended items until the user is attracted by an item, which is clicked, and does not examine the rest of the items. This model of user behavior is known as the cascade model. We propose an online learning algorithm, cascadelsb, for solving our problem. The algorithm actively explores the tastes of the user with the objective of learning to recommend the optimal diverse list. We analyze the algorithm and prove a gap-free upper bound on its n-step regret. We evaluate cascadelsb on both synthetic and real-world datasets, compare it to various baselines, and show that it learns even when our modeling assumptions do not hold exactly.
103 - Shuo Sun , Kevin Duh 2020
Learning to rank is an important task that has been successfully deployed in many real-world information retrieval systems. Most existing methods compute relevance judgments of documents independently, without holistically considering the entire set of competing documents. In this paper, we explore modeling documents interactions with self-attention based neural networks. Although self-attention networks have achieved state-of-the-art results in many NLP tasks, we find empirically that self-attention provides little benefit over baseline neural learning to rank architecture. To improve the learning of self-attention weights, We propose simple yet effective regularization terms designed to model interactions between documents. Evaluations on publicly available Learning to Rank (LETOR) datasets show that training self-attention network with our proposed regularization terms can significantly outperform existing learning to rank methods.
How to obtain an unbiased ranking model by learning to rank with biased user feedback is an important research question for IR. Existing work on unbiased learning to rank (ULTR) can be broadly categorized into two groups -- the studies on unbiased learning algorithms with logged data, namely the textit{offline} unbiased learning, and the studies on unbiased parameters estimation with real-time user interactions, namely the textit{online} learning to rank. While their definitions of textit{unbiasness} are different, these two types of ULTR algorithms share the same goal -- to find the best models that rank documents based on their intrinsic relevance or utility. However, most studies on offline and online unbiased learning to rank are carried in parallel without detailed comparisons on their background theories and empirical performance. In this paper, we formalize the task of unbiased learning to rank and show that existing algorithms for offline unbiased learning and online learning to rank are just the two sides of the same coin. We evaluate six state-of-the-art ULTR algorithms and find that most of them can be used in both offline settings and online environments with or without minor modifications. Further, we analyze how different offline and online learning paradigms would affect the theoretical foundation and empirical effectiveness of each algorithm on both synthetic and real search data. Our findings could provide important insights and guideline for choosing and deploying ULTR algorithms in practice.
88 - Kai Yuan , Da Kuang 2021
Autocomplete (a.k.a Query Auto-Completion, AC) suggests full queries based on a prefix typed by customer. Autocomplete has been a core feature of commercial search engine. In this paper, we propose a novel context-aware neural network based pairwise ranker (DeepPLTR) to improve AC ranking, DeepPLTR leverages contextual and behavioral features to rank queries by minimizing a pairwise loss, based on a fully-connected neural network structure. Compared to LambdaMART ranker, DeepPLTR shows +3.90% MeanReciprocalRank (MRR) lift in offline evaluation, and yielded +0.06% (p < 0.1) Gross Merchandise Value (GMV) lift in an Amazons online A/B experiment.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا