No Arabic abstract
Magnetic properties and underlying magnetic models of the synthetic A$_2$Cu$_3$O(SO$_4)_3$ fedotovite (A = K) and puninite (A = Na) minerals, as well as the mixed euchlorine-type NaKCu$_3$O(SO$_4)_3$ are reported. We show that all these compounds contain magnetic Cu$_6$ hexamer units, which at temperatures below about 100 K act as single spin-1 entities. Weak interactions between these magnetic molecules lead to long-range order below $T_N$ = 3.4 K (A = Na), 4.7 K (A = NaK), and about 3.0 K (A = K). The formation of the magnetic order is elucidated by ab initio calculations that reveal two-dimensional inter-hexamer interactions within crystallographic $bc$ planes. This model indicates the presence of a weakly distorted square lattice of $S=1$ magnetic ions and challenges the earlier description of the A$_2$Cu$_3$O(SO$_4)_3$ minerals in terms of Haldane spin chains.
The compounds A$_2$Cu$_3$O(SO$_4$)$_3$ (A=Na, K) are characterized by copper hexamers which are weakly coupled to realize antiferromagnetic order below TN=3 K. They constitute novel quantum spin systems with S=1 triplet ground-states. We investigated the energy-level splittings of the copper hexamers by inelastic neutron scattering experiments covering the entire range of the magnetic excitation spectra. The observed transitions are governed by very unusual selection rules which we ascribe to the underlying spin-coupling topology. This is rationalized by model calculations which allow an unambiguous interpretation of the magnetic excitations concerning both the peak assignments and the nature of the spin-coupling parameters.
The results of EXAFS measurements at 300 K for the superconducting compounds Tl$_{0.75}$Cu$_{0.25}$Ba$_{2}$Ca$_{3}$Cu$_4$O$_{y}$ [Tl-1234], TlBa$_{2}$Ca$_{3}$Cu$_{4}$O$_{y}$ [Tl-1212], and CuBa$_{2}$Ca$_{3}$Cu$_{4}$O$_{y}$ [Cu-1234]. are reported. We have measured the EXAFS spectrum for Tl$_{0.75}$Cu$_{0.25}$Ba$_{2}$Ca$_{3}$Cu$_4$O$_{y}$ in the range 10K-300K, however here we limit our discussion to the spectrum at 300 K. This material is prepared under high pressure [3.5 GPa] from precursors with small carbon concentrations and exhibits a T$_c$ of $~127$ K. We have also performed ``aging study by looking at XRD for this material after approximately one year. The XRD results at 300 K are ``unchanged. It is of interest to compare the EXAFS spectrum of this compound with the corresponding compound Cu-1234. Remarks on the choice of appropriate EXAFS standard for this and related compounds are also given. Based on our data analysis we quantify disorder in these systems. By using the Cu-O in-plane distance we give values for the microstrain parameter, which can be related to the charge ordering transition.
Naturally occurring spin-valve-type magnetoresistance (SVMR), recently observed in Sr2FeMoO6 samples, suggests the possibility of decoupling the maximal resistance from the coercivity of the sample. Here we present the evidence that SVMR can be engineered in specifically designed and fabricated core-shell nanoparticle systems, realized here in terms of soft magnetic Fe3O4 as the core and hard magnetic insulator CoFe2O4 as the shell materials. We show that this provides a magnetically switchable tunnel barrier that controls the magnetoresistance of the system, instead of the magnetic properties of the magnetic grain material, Fe3O4, and thus establishing the feasibility of engineered SVMR structures.
Fedotovite K$_2$Cu$_3$O(SO$_4$)$_3$ is a candidate of new quantum spin systems, in which the edge-shared tetrahedral (EST) spin-clusters consisting of Cu$^{2+}$ are connected by weak inter-cluster couplings to from one-dimensional array. Comprehensive experimental studies by magnetic susceptibility, magnetization, heat capacity, and inelastic neutron scattering measurements reveal the presence of an effective $S$ = 1 Haldane state below $T cong 4$ K. Rigorous theoretical studies provide an insight into the magnetic state of K$_2$Cu$_3$O(SO$_4$)$_3$: an EST cluster makes a triplet in the ground state and one-dimensional chain of the EST induces a cluster-based Haldane state. We predict that the cluster-based Haldene state emerges whenever the number of tetrahedra in the EST is $even$.
Polarized and unpolarized neutron diffraction has been used to search for magnetic order in YBa$_2$Cu$_3$O$_{6+x}$ superconductors. Most of the measurements were made on a high quality crystal of YBa$_2$Cu$_3$O$_{6.6}$. It is shown that this crystal has highly ordered ortho-II chain order, and a sharp superconducting transition. Inelastic scattering measurements display a very clean spin-gap and pseudogap with any intensity at 10 meV being 50 times smaller than the resonance intensity. The crystal shows a complicated magnetic order that appears to have three components. A magnetic phase is found at high temperatures that seems to stem from an impurity with a moment that is in the $a$-$b$ plane, but disordered on the crystal lattice. A second ordering occurs near the pseudogap temperature that has a shorter correlation length than the high temperature phase and a moment direction that is at least partly along the c-axis of the crystal. Its moment direction, temperature dependence, and Bragg intensities suggest that it may stem from orbital ordering of the $d$-density wave (DDW) type. An additional intensity increase occurs below the superconducting transition. The magnetic intensity in these phases does not change noticeably in a 7 Tesla magnetic field aligned approximately along the c-axis. Searches for magnetic order in YBa$_2$Cu$_3$O$_{7}$ show no signal while a small magnetic intensity is found in YBa$_2$Cu$_3$O$_{6.45}$ that is consistent with c-axis directed magnetic order. The results are contrasted with other recent neutron measurements.