Do you want to publish a course? Click here

Microwave Spectral Imaging of an Erupting Magnetic Flux Rope: Implications for the Standard Solar Flare Model in Three Dimensions

68   0   0.0 ( 0 )
 Added by Bin Chen
 Publication date 2020
  fields Physics
and research's language is English
 Authors Bin Chen




Ask ChatGPT about the research

We report microwave spectral imaging observations of an erupting magnetic flux rope during the early impulsive phase of the X8.2-class limb flare on 2017 September 10, obtained by the Expanded Owens Valley Solar Array. A few days prior to the eruption, when viewed against the disk, the flux rope appeared as a reverse S-shaped dark filament along the magnetic polarity inversion line. During the eruption, the rope exhibited a hot channel structure in extreme ultraviolet and soft X-ray passbands sensitive to ~10 MK plasma. The central portion of the flux rope was nearly aligned with the line of sight, which quickly developed into a teardrop-shaped dark cavity during the early phase of the eruption. A long and thin plasma sheet formed below the cavity, interpreted as the reconnection current sheet viewed edge-on. A nonthermal microwave source was present at the location of the central current sheet, which extended upward encompassing the dark cavity. A pair of nonthermal microwave sources were observed for several minutes on both sides of the main flaring region. They shared a similar temporal behavior and spectral property to the central microwave source below the cavity, interpreted as the conjugate footpoints of the erupting flux rope. These observations are broadly consistent with the magnetic topology and the associated energy release scenario suggested in the three-dimensional standard model for eruptive solar flares. In particular, our detection of nonthermal emission at conjugate flux rope footpoints provides solid evidence of particle transport along an erupting magnetic flux rope.



rate research

Read More

96 - Z. Wu , Y. Chen , G. Huang 2016
Corona structures and processes during the pre-impulsive stage of solar eruption are crucial to understanding the physics leading to the subsequent explosive energy release. Here we present the first microwave imaging study of a hot flux rope structure during the pre-impulsive stage of an eruptive M7.7 solar flare, with the Nobeyama Radioheliograph (NoRH) at 17 GHz. The flux rope is also observed by the SDO/AIA in its hot passbands of 94 and 131 AA. In the microwave data, it is revealed as an overall arcade-like structure consisting of several intensity enhancements bridged by generally weak emissions, with brightness temperatures ($T_B$) varying from ~10,000~K to ~20,000 K. Locations of microwave intensity enhancements along the structure remain relatively fixed at certain specific parts of the flux rope, indicating that the distribution of emitting electrons is affected by the large scale magnetic configuration of the twisted flux rope. Wavelet analysis shows a pronounced 2-min period of the microwave $T_B$ variation during the pre-impulsive stage of interest. The period agrees well with that reported for AIA sunward-contracting loops and upward ejective plasmoids (suggested to be reconnection outflows). This suggests that both periodicities are controlled by the same reconnection process that takes place intermittently at a 2-min time scale. We infer that at least a part of the emission is excited by non-thermal energetic electrons via the gyro-synchrotron mechanism. The study demonstrates the potential of microwave imaging in exploring the flux rope magnetic geometry and relevant reconnection process during the onset of solar eruption.
We investigated the dynamic evolution of a 3-dimensional (3D) flux rope eruption and magnetic reconnection process in a solar flare, by simply extending 2-dimensional (2D) resistive magnetohydrodynamic simulation model of solar flares with low $beta$ plasma to 3D model. We succeeded in reproducing a current sheet and bi-directional reconnection outflows just below the flux rope during the eruption in our 3D simulations. We calculated four cases of a strongly twisted flux rope and a weakly twisted flux rope in 2D and 3D simulations. The time evolution of a weakly twisted flux rope in 3D simulation shows similar behaviors to 2D simulation, while a strongly twisted flux rope in 3D simulation shows clearly different time evolution from 2D simulation except for the initial phase evolution. The ejection speeds of both strongly and weakly twisted flux ropes in 3D simulations are larger than 2D simulations, and the reconnection rates in 3D cases are also larger than 2D cases. This indicates a positive feedback between the ejection speed of a flux rope and the reconnection rate even in the 3D simulation, and we conclude that the plasmoid-induced reconnection model can be applied to 3D. We also found that small scale plasmoids are formed inside a current sheet and make it turbulent. These small scale plasmoid ejections has role in locally increasing reconnection rate intermittently as observed in solar flares, coupled with a global eruption of a flux rope.
190 - Yu-Hao Zhou , C. Xia , R. Keppens 2018
Solar prominences are subject to all kinds of perturbations during their lifetime, and frequently demonstrate oscillations. The study of prominence oscillations provides an alternative way to investigate their internal magnetic and thermal structures as the oscillation characteristics depend on their interplay with the solar corona. Prominence oscillations can be classified into longitudinal and transverse types. We perform three-dimensional ideal magnetohydrodynamic simulations of prominence oscillations along a magnetic flux rope, with the aim to compare the oscillation periods with those predicted by various simplified models and to examine the restoring force. We find that the longitudinal oscillation has a period of about 49 minutes, which is in accordance with the pendulum model where the field-ligned component of gravity serves as the restoring force. In contrast, the horizontal transverse oscillation has a period of about 10 minutes and the vertical transverse oscillation has a period of about 14 minutes, and both of them can be nicely fitted with a two-dimensional slab model. We also find that the magnetic tension force dominates most of the time in transverse oscillations, except for the first minute when magnetic pressure overwhelms.
We investigate the formation times of eruptive magnetic flux ropes relative to the onset of solar eruptions, which is important for constraining models of coronal mass ejection (CME) initiation. We inspected uninterrupted sequences of 131 AA images that spanned more than eight hours and were obtained by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO) to identify the formation times of hot flux ropes that erupted in CMEs from locations close to the limb. The appearance of the flux ropes as well as their evolution toward eruptions were determined using morphological criteria. Two-thirds (20/30) of the flux ropes were formed well before the onset of the eruption (from 51 minutes to more than eight hours), and their formation was associated with the occurrence of a confined flare. We also found four events with preexisting hot flux ropes whose formations occurred a matter of minutes (from three to 39) prior to the eruptions without any association with distinct confined flare activity. Six flux ropes were formed once the eruptions were underway. However, in three of them, prominence material could be seen in 131 AA images, which may indicate the presence of preexisting flux ropes that were not hot. The formation patterns of the last three groups of hot flux ropes did not show significant differences. For the whole population of events, the mean and median values of the time difference between the onset of the eruptive flare and the appearance of the hot flux rope were 151 and 98 minutes, respectively. Our results provide, on average, indirect support for CME models that involve preexisting flux ropes; on the other hand, for a third of the events, models in which the ejected flux rope is formed during the eruption appear more appropriate.
215 - B. Kliem , J. Lin , T. G. Forbes 2014
The onset of a solar eruption is formulated here as either a magnetic catastrophe or as an instability. Both start with the same equation of force balance governing the underlying equilibria. Using a toroidal flux rope in an external bipolar or quadrupolar field as a model for the current-carrying flux, we demonstrate the occurrence of a fold catastrophe by loss of equilibrium for several representative evolutionary sequences in the stable domain of parameter space. We verify that this catastrophe and the torus instability occur at the same point; they are thus equivalent descriptions for the onset condition of solar eruptions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا